共查询到20条相似文献,搜索用时 15 毫秒
1.
NAADP mobilizes calcium from the endoplasmic reticular Ca(2+) store in T-lymphocytes 总被引:2,自引:0,他引:2
The target calcium store of nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent endogenous calcium-mobilizing compound known to date, has been proposed to reside in the lysosomal compartment or in the endo/sarcoplasmic reticulum. This study was performed to test the hypothesis of a lysosomal versus an endoplasmic reticular calcium store sensitive to NAADP in T-lymphocytes. Pretreatment of intact Jurkat T cells with glycyl-phenylalanine 2-naphthylamide largely reduced staining of lysosomes by LysoTracker Red and abolished NAADP-induced Ca(2+) signaling. However, the inhibitory effect was not specific since Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate and cyclic ADP-ribose was abolished, too. Bafilomycin A1, an inhibitor of the lysosomal H(+)-ATPase, did not block or reduce NAADP-induced Ca(2+) signaling, although it effectively prevented labeling of lysosomes by LysoTracker Red. Further, previous T cell receptor/CD3 stimulation in the presence of bafilomycin A1, assumed to block refilling of lysosomal Ca(2+) stores, did not antagonize subsequent NAADP-induced Ca(2+) signaling. In contrast to bafilomycin A1, emptying of the endoplasmic reticulum by thapsigargin almost completely prevented Ca(2+) signaling induced by NAADP. In conclusion, in T-lymphocytes, no evidence for involvement of lysosomes in NAADP-mediated Ca(2+) signaling was obtained. The sensitivity of NAADP-induced Ca(2+) signaling toward thapsigargin, combined with our recent results identifying ryanodine receptors as the target calcium channel of NAADP (Dammermann, W., and Guse, A. H. (2005) J. Biol. Chem. 280, 21394-21399), rather suggest that the target calcium store of NAADP in T cells is the endoplasmic reticulum. 相似文献
2.
K H Krause 《FEBS letters》1991,285(2):225-229
Intracellular Ca(2+)-storage organelles are found in virtually all eukaryotic cells. They play an important role in the regulation of the cytosolic free Ca2+ concentration and, thereby, in the regulation of cellular activity. Ca(2+)-storage organelles consist, in the simplest model of a Ca2+ pump, of a Ca(2+)-storage protein and a Ca(2+)-release channel. The primary structure of these functionally important proteins of Ca(2+)-storage organelles is similar in different cell types and conserved through evolution. In contrast, their spatial arrangement and, thus, the architecture of Ca(2+)-storage organelles may vary dramatically from one cell type to another. 相似文献
3.
R Kuroda K Kontani Y Kanda T Katada T Nakano Y Satoh N Suzuki H Kuroda 《Development (Cambridge, England)》2001,128(22):4405-4414
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs. 相似文献
4.
Isolation and characterization of plasma membrane-associated cortical granules from sea urchin eggs 总被引:3,自引:6,他引:3
下载免费PDF全文

Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization. 相似文献
5.
The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca(2+) from the acidic Ca(2+) stores of many organisms, including those of the sea urchin egg. We investigated whether the pH within the lumen of these acidic organelles changes in response to stimuli. Fertilization activates the egg by Ca(2+) release dependent upon NAADP, and accordingly, we report that fertilization also alters organellar pH in a spatio-temporally complex manner. Upon sperm fusion, vesicles deep in the egg center slowly acidify, whereas cortical vesicles undergo a rapid alkalinization. The cortical vesicle alkalinization is independent of exocytosis and cytosolic pH but coincides with the NAADP-dependent fertilization Ca(2+) wave. Microinjection of NAADP mimicked the fertilization cortical response, suggesting that it occurred within NAADP-sensitive acidic Ca(2+) stores. Our data show that NAADP and physiological stimuli alter the pH within intracellular organelles and suggest that NAADP signals through pH as well as Ca(2+). 相似文献
6.
7.
Acid release, Ca2+ influx and stimulation of protein synthesis were investigated with sea urchin eggs submitted to an excess of KCl, to NH4Cl, and to a combination of both. KCl, though unable to promote any acid release, triggers a large 45Ca uptake by eggs and slightly stimulates protein synthesis, provided that external Ca2+ is present. NH4Cl, which induces an intracellular pH increase, triggers a late and small 45Ca uptake but highly stimulates protein synthesis. The combined use of NH4Cl + KCl allows a large 45Ca uptake to occur but the level of protein synthesis is similar to that obtained with NH4Cl alone and is identical whether external Ca2+ is present or not. In contrast to previous works, our results show that the large stimulation of protein synthesis triggered by an intracellular pH increase, as after NH4Cl activation, cannot be enhanced by a Ca2+ influx. This suggests that the Ca2+ influx occurring after fertilization has only a minimal effect on the overall stimulation of protein synthesis. 相似文献
8.
López-Godínez J Garambullo TI Martínez-Cadena G García-Soto J 《Biochemical and biophysical research communications》2003,301(1):13-16
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge. 相似文献
9.
The presence of peroxidatic activity of catalase in eggs of the sea urchins Hemicentrotus pulcherrimus and Temnopleurus toreumaticus was investigated by the ultrastructural cytochemical techniue and by biochemical assay on homogenates of eggs from before fertilization to the 2-cell stage. Biochemical assays showed that the unfertilized eggs had strong catalase activity whereas fertilized eggs had weak activity owing to the rapid decrease of activity after fertilization. The activity did not change from immediately after fertilization to the 2-cell stage. Cytochemical examination showed that the peroxidatic activity of catalase was mainly localized in the lamellae in the cortical granules. Disintegrated cortical granules with no lamellae and substances in the perivitelline space derived from breakdown of the cortical granules had no peroxidatic activity of catalase. 相似文献
10.
Protein kinase C from sea urchin eggs 总被引:4,自引:0,他引:4
S S Shen L A Ricke 《Comparative biochemistry and physiology. B, Comparative biochemistry》1989,92(2):251-254
1. Protein kinase C is considered to be ubiquitous in tissues and organs; however, its isolation and characterization have been principally with adult mammalian tissues. 2. There is increasing evidence for the importance of this enzyme during early development. 3. In this study, protein kinase C has been identified and partially characterized in cytosolic fraction from sea urchin eggs. 4. The enzyme was resolved from other protein kinase activities by ion exchange chromatography. 5. Phosphatidylserine and Ca2+ were required for protein kinase C to be active. 6. Diacylglycerol and phorbol ester enhanced the activation of the enzyme. 相似文献
11.
Two Ca2(+)-binding proteins of sea urchin eggs were purified and partially characterized. They showed Ca2(+)-dependent binding to actin filaments and Ca2(+)-dependent changes of fluorescence intensity which was used to estimate the affinity constant of these proteins to Ca2+ ions. Ca2+ ions did not increase phospholipid binding ability of these proteins. Therefore these proteins are distinguished from the calpactin family. Staining of sections of metaphase eggs embedded in paraffin showed their localization in the mitotic apparatus. Furthermore, staining of whole mount eggs with anti-tubulin and antibodies against these proteins, followed by observations with confocal laser-scanning microscopy showed their co-localization with microtubules more clearly. In vitro co-sedimentation assay of microtubules with these proteins, however, showed no interaction between them. This suggested that some structures surrounding the mitotic apparatus microtubules are responsible for their localization. 相似文献
12.
Polymerization of actin from sea urchin eggs 总被引:3,自引:0,他引:3
13.
NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors 总被引:3,自引:0,他引:3
Gerasimenko JV Maruyama Y Yano K Dolman NJ Tepikin AV Petersen OH Gerasimenko OV 《The Journal of cell biology》2003,163(2):271-282
Ca2+ release from the envelope of isolated pancreatic acinar nuclei could be activated by nicotinic acid adenine dinucleotide phosphate (NAADP) as well as by inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose (cADPR). Each of these agents reduced the Ca2+ concentration inside the nuclear envelope, and this was associated with a transient rise in the nucleoplasmic Ca2+ concentration. NAADP released Ca2+ from the same thapsigargin-sensitive pool as IP3. The NAADP action was specific because, for example, nicotineamide adenine dinucleotide phosphate was ineffective. The Ca2+ release was unaffected by procedures interfering with acidic organelles (bafilomycin, brefeldin, and nigericin). Ryanodine blocked the Ca2+-releasing effects of NAADP, cADPR, and caffeine, but not IP3. Ruthenium red also blocked the NAADP-elicited Ca2+ release. IP3 receptor blockade did not inhibit the Ca2+ release elicited by NAADP or cADPR. The nuclear envelope contains ryanodine and IP3 receptors that can be activated separately and independently; the ryanodine receptors by either NAADP or cADPR, and the IP3 receptors by IP3. 相似文献
14.
15.
Chan WL Holstein-Rathlou NH Yip KP 《American journal of physiology. Cell physiology》2001,280(3):C593-C603
Peptides with the Arg-Gly-Asp (RGD) motif induce vasoconstriction in rat afferent arterioles by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). This finding suggests that occupancy of integrins on the plasma membrane of VSMC might affect vascular tone. The purpose of this study was to determine whether occupancy of integrins by exogenous RGD peptides initiates intracellular Ca(2+) signaling in cultured renal VSMC. When smooth muscle cells were exposed to 0.1 mM hexapeptide GRGDSP, [Ca(2+)](i) rapidly increased from 91 +/- 4 to 287 +/- 37 nM and then returned to the baseline within 20 s (P < 0.05, 34 cells/5 coverslips). In controls, the hexapeptide GRGESP did not trigger Ca(2+) mobilization. Local application of the GRGDSP induced a regional increase of cytoplasmic [Ca(2+)](i), which propagated as Ca(2+) waves traveling across the cell and induced a rapid elevation of nuclear [Ca(2+)](i). Spontaneous recurrence of smaller-amplitude Ca(2+) waves were found in 20% of cells examined after the initial response to RGD-containing peptides. Blocking dihydropyridine-sensitive Ca(2+) channels with nifedipine or removal of extracellular Ca(2+) did not inhibit the RGD-induced Ca(2+) mobilization. However, pretreatment of 20 microM ryanodine completely eliminated the RGD-induced Ca(2+) mobilization. Anti-beta(1) and anti-beta(3)-integrin antibodies with functional blocking capability simulate the effects of GRGDSP in [Ca(2+)](i). Incubation with anti-beta(1)- or beta(3)-integrin antibodies inhibited the increase in [Ca(2+)](i) induced by GRGDSP. We conclude that exogenous RGD-containing peptides induce release of Ca(2+) from ryanodine-sensitive Ca(2+) stores in renal VSMC via integrins, which can trigger cytoplasmic Ca(2+) waves propagating throughout the cell. 相似文献
16.
17.
Dynein isoforms in sea urchin eggs 总被引:3,自引:0,他引:3
M E Porter P M Grissom J M Scholey E D Salmon J R McIntosh 《The Journal of biological chemistry》1988,263(14):6759-6771
Biochemical and immunological analysis of unfertilized sea urchin eggs has revealed the presence of at least two distinct isoforms of cytoplasmic dyneins, one soluble and the other microtubule-associated. The soluble enzyme is a 20 S particle with a MgATPase activity that can be activated 5-fold by nonionic detergents. It contains heavy chain polypeptides that 1) comigrate with the dynein heavy chains of embryonic cilia; 2) cross-react with antibodies against flagellar dynein; and 3) are cleaved by UV irradiation in the presence of MgATP and sodium vanadate into specific peptide fragments. The soluble egg dynein is, therefore, closely related to axonemal dynein and may be a ciliary precursor. Egg microtubule preparations contain a distinct dynein-like polypeptide, previously designated HMr-3 (Scholey, J.M., Neighbors, B., McIntosh, J.R., and Salmon, E.D. (1984) J. Biol Chem. 259, 6516-6525). HMr-3 binds microtubules in an ATP-sensitive fashion; it sediments at 20 S on sucrose density gradients, and it is susceptible to vanadate-sensitized UV cleavage. However, HMr-3 can be distinguished from the soluble cytoplasmic dynein on the basis of its weak cross-reactivity with antiflagellar dynein antibodies, its heavy chain composition on high resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis, its low specific ATPase activity, and the molecular weight of its vanadate-induced UV cleavage fragments. HMr-3 may represent a dynein-like polypeptide that is distinct from the pool of ciliary dynein precursors. 相似文献
18.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase. 相似文献
19.
Two-pore channels (TPCs or TPCNs) are novel members of the large superfamily of voltage-gated cation channels with slightly higher sequence homology to the pore-forming subunits of voltage-gated Ca2+ and Na+ channels than most other members. Recent studies demonstrate that TPCs locate to endosomes and lysosomes and form Ca2+ release channels that respond to activation by the Ca2+ mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). With multiple endolysosomal targeted NAADP receptors now identified, important new insights into the regulation of endolysosomal function in health and disease will therefore be unveiled. 相似文献
20.
Following insemination of sea urchin eggs, both the rate of Ca uptake by the eggs and the rate of Ca efflux from the eggs increase (see text for references). We find that both of these components of the egg's Ca response are absent following partial activation with ammonia. This suggests that the so-called “late events” of fertilization, which are activated by ammonia treatment, are not mediated directly by changes in egg Ca. 相似文献