首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The formate oxidizing capacity of Wolinella recta ATCC 33238 was studied in relation to growth under anaerobic and microaerobic conditions. Three distinct activities could be recognized: (a) cyanide-insensitive H2O2-producing oxidation of formate; (b) peroxidation of formate (H2O2-consuming); (c) oxidation of formate via an electron transport chain with oxygen as the electron acceptor. The contribution of these different formate oxidizing components during the growth of W. recta was dependent on the extent of aeration. It is suggested that due to the relative increase in overall H2O2 formation at higher oxygen tensions growth of W. recta appears possible only under anaerobic and microaerobic conditions.  相似文献   

2.
Abstract Using fungi grown on synthetic agar medium, we evaluated and compared the concentration of various H2O2-producing enzymes. Our results showed that oxidase production in solid medium was better than that found in liquid medium and as high as that detected in wood samples. High yields of oxidases made it possible to compare different oxidases in the same culture extracts and under different conditions. Our results also indicated that H2O2 production is ubiquitous in the white rot fungi tested and that enzyme levels are influenced by the substrate composition.  相似文献   

3.
A quantitative method was developed for the measurement of micromolar quantities of H2O2 produced in Rogosa broth and peptonized milk broth by vaginal strains of lactobacilli isolated from women. The production of substantial amounts reproducibly was dependent on the growth of the organisms in acid media (pH ≤6.0) under anaerobic or micro-aerophilic conditions with continuous agitation. The addition to the media of the enzyme inhibitor, 3-amino-l,2,4-triazole, with or without catalase sometimes induced the production of H2O2 especially in non-agitated cultures. However, other agents such as concanavalin and o -dianisidine had no enhancing effect, and catalase or peroxidase alone completely inhibited H2O2 production.
The H2O2 produced in the acid media was stable for more than a month at 5°C but not in media at pH ≥ 7.0. Of five strains of lactobacilli tested by the quantitative method and by a chromogenic qualitative method (Rogosa-catalase or -peroxidase agar), three consistently produced H2O2 measurable by the former method, but none did so after growth of the organisms on Rogosa-catalase/peroxidase agar which suggested that the qualitative method was unreliable. The fact that H2O2 was produced in substantial quantities by some strains and not at all by others enabled H2O2-producers and non-producers to be distinguished easily.  相似文献   

4.
Elevated levels of salicylic acid (SA) are required for the induction of systemic acquired resistance (SAR) in plants. Recently, a salicylic acid-binding protein (SABP) isolated from tobacco was shown to have catalase activity. Based on this finding elevated levels of hydrogen peroxide (H2O2) were postulated to act as a second messenger of SA in the SAR signal transduction pathway. A series of experiments have been carried out to clarify the role of H2O2 in SAR-signaling. No increase of H2O2 was found during the onset of SAR. Induction of the SAR gene, PR-1, by H2O2 and H2O2-inducing chemicals is strongly suppressed in transgenic tobacco plants that express the bacterial salicylate hydroxylase gene, indicating that H2O2 induction of SAR genes is dependent on SA accumulation. Following treatment of plants with increasing concentrations of H2O2, a dose-dependent accumulation of total SA species was found, suggesting that H2O2 may induce PR-1 gene expression through SA accumulation. While the results do not support a role for H2O2 in SAR signaling, it is suggested that SA inhibition of catalase activity may be important in tissues undergoing a hypersensitive response.  相似文献   

5.
A mathematical model of syntrophic cocultures in the chemostat   总被引:1,自引:0,他引:1  
Abstract A model is presented for syntrophic associations between H2-producing acetogenic bacteria and H2-utilizing bacteria. A growth rate expression different from the usual Monod equation is applied to the H2-producing acetogenic bacterium to take into account the thermodynamics of the metabolic reaction involved as dominant factor. The steady of states of the model system are given as branches in a bifurcation diagram. Numerical experiments on the stability of the branches and on the influence of different values in model parameters are performed. The predictions of our model are discussed with regard to the results obtained from experiments with syntrophic cocultures of different species of H2-producing acetogenic bacteria in combination with H2-consuming bacteria.  相似文献   

6.
The role of the ascorbate-glutathione cycle and AOS detoxification was investigated during leaf growth of defoliated and undefoliated plants of ryegrass ( Lolium perenne L. cv. Bravo). Antioxidants and related enzymatic activities were located in elongating leaf bases (ELBs) of undefoliated plants, following a decreasing gradient from basal (meristem) to distal segments, inverse to H2O2 levels. In the meristematic zone, the intense activity of the ascorbate-glutathione cycle and the supply of reducing power by the oxidative pentose phosphate pathway allowed the maintenance of both antioxidant reduction and H2O2 detoxification. BCNU (1–3 bis(2-chloroethyl)- N -nitrosourea), a glutathione reductase inhibitor, induced an increase in the meristematic zone in both H2O2 and antioxidant levels and a decrease in reduced/oxidized ratios of glutathione and ascorbate. These changes were associated with a reduced foliar regrowth activity. In the absence of BCNU, defoliation did not modify the ratios of reduced/oxidized antioxidants, although it triggered a temporary increase in H2O2 level. The results are discussed on the basis of a possible control of leaf growth by glutathione and ascorbate.  相似文献   

7.
D.A. DIONYSIUS, P.A. GRIEVE AND A.C. VOS. 1992. Components of the lactoperoxidase system were measured during incubation in Isosensitest broth, with enzymatic (glucose oxidase, GO) or chemical (sodium carbonate peroxyhydrate, SCP) means to generate H2O2. When low levels of thiocyanate (SCN-) were used in the GO system, H2O2 was detected and lactoperoxidase (LP) was inactivated when SCN- was depleted. With 10-fold higher SCN-, LP remained active and H2O2 was not detectable. The oxidation product of the LP reaction, most likely hypothiocyanite, was present in low concentrations. When SCP was used for the immediate generation of H2O2 in a system employing low SCN-, half the LP activity was lost within minutes but thereafter it remained stable. Low concentrations of oxidation product were measured and H2O2 was not detected during the course of the experiment. At high SCN- levels, relatively high concentrations of oxidation product were produced immediately, with H2O2 undetectable. The results suggest that the final product of the LP reaction depends on the method of H2O2 generation and the relative proportions of the substrates. Antibacterial activity of the two LPS was tested against an enterotoxigenic strain of Escherichia coli. Both systems showed bactericidal activity within 4 h incubation at 37°C.  相似文献   

8.
Abstract Hydroperoxide inactivation of the protoplast enzymes enolase, aldolase and glucose-6-phosphate dehydrogenase in intact spores of Bacillus megaterium ATCC19213 was assessed by first treating the cells with lethal levels of H2O2, then germinating them in the presence of chloramphenicol prior to permeabilization and enzyme assays. Glucose-6-phosphate dehydrogenase proved to be more sensitive to H2O2than enolase or aldolase, in agreement with findings for isolated enzymes. Average D values (time for 90% inactivation) for spores treated with 0.50% H2O2 were 173 min for enolase, 67 min for aldolase and 32 min for glucose-6-phosphate dehydrogenase, compared with a D value of 34 min for spore killing. H2O2 killing of spores was found to be conditional in that recoveries of survivors were greater on complex medium than on minimal medium. Overall, it appeared that oxidative inactivation of enzymes may be important for hydroperoxide killing of spores.  相似文献   

9.
Abstract In situ concentrations of hydrogen and other metabolites involved in H2-consuming and H2-producing reactions were measured in anoxic methanogenic lake sediments, sewage sludge and fetid liquid of cottonwood. The data were used to calculate the Gibbs free energies of the metabolic reactions under the conditions prevailing in situ. The thermodynamics of most of the reactions studied were exergonic with Gibbs free energies being more negative for H2-dependent sulfate reduction methanogenesis acetogenesis and for H2-producing lactate fermentation ethanol fermentation. Butyrate and propionate fermentation, on the other hand, were endergonic under in situ conditions. This observation is interpreted by suggesting that butyrate and propionate is degraded within microbial clusters which shield the fermentating bacteria from the outside H2 (and acetate) pool.  相似文献   

10.
Abstract: H2O2 and free radical-mediated oxidative stresses have been implicated in mediating amyloid β(1–40) [Aβ(1–40)] neurotoxicity to cultured neurons. In this study, we confirm that addition of the H2O2-scavenging enzyme catalase protects neurons in culture against Aβ-mediated toxicity; however, it does so by a mechanism that does not involve its ability to scavenge H2O2. Aβ-mediated elevation in intracellular H2O2 production is suppressed by addition of a potent H2O2 scavenger without any significant neuroprotection. Three intracellular biochemical markers of H2O2-mediated oxidative stress were unchanged by Aβ treatment: (a) glyceraldehyde-3-phosphate dehydrogenase activity, (b) hexose monophosphate shunt activity, and (c) glucose oxidation via the tricarboxylic acid cycle. Ionspray mass spectra of Aβ in the incubation medium indicated that Aβ itself is an unlikely source of reactive oxygen species. In this study we demonstrate that intracellular ATP concentration is compromised during the first 24-h exposure of neurons to Aβ. Our results challenge a pivotal role for H2O2 generation in mediating Aβ toxicity, and we suggest that impairment of energy homeostasis may be a more significant early factor in the neurodegenerative process.  相似文献   

11.
Abstract: Involvement of reactive oxygen species has been implicated in plant defence against pathogens. We report here a novel pathway of H2O2 generation induced by the addition of phosphate in soybean ( Glycine max L.) cell suspension cultures. This H2O2 generation was initiated shortly after the addition of phosphate, and lasted only approximately one hour, as opposed to several hours observed during an attack by an avirulent strain of the bacterial pathogen Pseudomonas syringae pv. glycinea (Psg). In addition, when cell cultures were treated with both phosphate and the avirulent pathogen, two distinct oxidative burst events were observed. In contrast to DPI-sensitive Psg -induced H2O2 generation, phosphate-induced H2O2 generation was insensitive to this NADPH oxidase inhibitor. This suggests that an NADPH oxidase-independent pathway may be involved in the phosphate-induced H2O2 accumulation, which could be involved in sensing of phosphate availability in the environment.  相似文献   

12.
The hydrogen peroxide (H2O2) stress response in Enterococcus faecalis ATCC19433 was investigated. A 2·4 mmol l−1 H2O2 pretreatment conferred protection against a lethal concentration (45 mmol l−1) of this agent. The relatively high concentrations of H2O2 used for adaptation and challenge treatments in Ent. faecalis emphasised the strong resistance towards oxidative stress in this species. Various stresses (NaCl, heat, ethanol, acidity and alkalinity) induced weak or strong H2O2 cross-protection. This paper describes the involvement of protein synthesis in the active response to lethal dose of H2O2, in addition to the impressive enhancement of synthesis of five H2O2 stress proteins. Combined results suggest that these proteins might play an important role in the H2O2 tolerance response.  相似文献   

13.
Abstract Reactivation of UV-irradiated phage b-1 was induced by H2O2 and UV in Bacteroides fragilis . The characteristics of H2O2 and UV induced phage reactivation differ from a previously reported oxygen induced reactivation system. The survival of B. fragilis cells after UV irradiation was also increased by pretreatment with H2O2. DNA synthesis was not inhibited in the host cells exposed to H2O2 concentrations which induced phage reactivation. The pattern of DNA degradation and synthesis after UV irradiation with and without H2O2 differed from the effect of O2 on DNA synthesis in irradiated B. fragilis cells.  相似文献   

14.
15.
Two bursts of H2O2 production have been detected by in situ 3,3'-diaminobenzidine (DAB) staining after cutting of Lolium perenne L. leaf blades. The first burst, which occurred immediately after wounding was inhibited by Na-diethydithiocarbamate (DIECA), a Cu/Zn–superoxide dismutase (SOD) inhibitor. The second burst, which was initiated several hours later, coincided with the induction of oxalate oxidase (G-OXO) activity detected in vitro or visualized in situ by the α-chloronaphtol assay. Four genes encoding G-OXO have been identified from cDNA obtained from wounded L. perenne L . leaf blades. Comparison of protein sequences revealed more than 91% homology in the coding region between G-OXOs of the true cereals and G-OXOs of ryegrass, which is a Gramineae belonging to the tribe of Festucaceae. The wound-dependent increase of G-OXO activity in floated cut leaf blades was the result of differential induction of the four g-oxo genes. The involvement of G-OXOs in wound-induced H2O2 production coincided with the presence in leaf tissues of oxalate throughout the period of increase of G-OXO synthesis. Moreover, expression of g-oxo genes was enhanced by an exogenous supply of H2O2 or methyljasmonate (MeJa). Expression of the four g-oxo genes was also induced after in planta stinging of leaf blades. The pattern of their expression in planta was identical to that occuring in senescing leaf sheaths. These results emphasize the importance of G-OXOs in H2O2 production in oxalate-producing plant species such as ryegrass. G-OXOs might be crucial during critical events in the life of plants such as cutting and senescence by initiating H2O2-mediated defences against pathogens and foraging animals.  相似文献   

16.
Suspension-cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells irradiated with UV-C (254 nm. 558 J m−2) showed a transient production of H2O2 as measured by chemiluminescence of luminol in the presence of peroxidase (EC 1.1 1.1.7). The peak concentration of H2O2, which occurred at about 60–90 min after irradiation, was 8–9 μ M . The time course for the appearance of H2O2 matched that for UV–induced K+ efflux. Treatments that inhibited the UV-induced efflux of K+, including heat and overnight incubation with cycloheximide and diethylmaleate, also inhibited the appearance of H2O2. The converse was not always true, since catalase (EC 1.11.1.6. and salicylhydroxamic acid, which inhibited luminescence, did not stop K+ efflux. We conclude that H2O2 synthesis depends on K+ efflux. Because H2.O2 in the extracellular space is required for lignin synthesis in many plant tissues, we suggest that the UV–stimulated production of H2O2 is an integral part of a defensive lignin synthesis.  相似文献   

17.
The effect of hydrogen peroxide on spores of Clostridium perfringens   总被引:3,自引:2,他引:1  
Dithiothreitol (DTT)-treated spores of Clostridium perfringens were much more sensitive to lysis by H2O2 in the presence of Cu2+ than untreated spores. Lysis was greatly inhibited by hydroxyl radical (.OH) scavengers such as thiourea, dimethylthiourea and dimethylsulfoxide, suggesting that lysis of spores by H2O2 involves formation of OH by Cu2+-catalysed decomposition of the peroxide. DTT-treated spores took up Cu2+ at almost the same rate and extent as did isolated cortical fragments. Hydrogen peroxide caused both the decrease in optical density and the hexosamine solubilization of cortical fragments which bound Cu2+.  相似文献   

18.
Detection of hydrogen peroxide produced by meat lactic starter cultures   总被引:1,自引:1,他引:0  
Twelve strains of meat lactic starter cultures (Pediococcus spp. and Lactobacillus plantarum) were found to produce hydrogen peroxide in vitro. The (cumulative) amounts of H2O2 produced were measured through the peroxidative action of catalase on H2O2 and oxidation of added formate to CO2 by the H2O2-catalase complex formed. There was a problem in building a calibration curve for converting values of formate oxidation into amounts of H2O2, either by adding H2O2 directly to the assay mixture or having it produced via a glucose-glucose oxidase system.  相似文献   

19.
20.
Abstract: We have used microdialysis to establish an experimental model to characterize mechanisms whereby released substances cause secondary damage in spinal cord injury. We use this model here to characterize damaging effects of the hydroxyl radical (OH') in vivo in the spinal cord. OH'was generatad in vivo by pumping H2O2 and FeCI2/EDTA through parallel microdialysis fibers inserted into the spinal cord. These agents mixed in the tissue to produce OH'by Fenton's reaction. Two types of control experiments were also conducted, one administering only 5 m M H2O2 and the other only 0.5 m M FeCI2/0.82 m M EDTA. During administration of these chemicals, electrical conduction was recorded as one test for deterioration. OH'blocked conduction completely in 2.5-5 h and Fe2+/EDTA partly blocked conduction, but H2O2 alone did not cause detectable blockage. Histological examination supported the hypothesis that neurons were killed by OH', as Fe2+/EDTA and H2O2 alone did not destroy significant numbers of neurons. OH', H2O2, and Fe2+ all caused gradual increases in extracellular amino acid levels. These results are consistent with Fe2+-catalyzed free radical generation playing a role in tissue damage upon spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号