首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Partial denaturation of Saccharomyces cerevisiae chromosomal DNA was found to occur spontaneously during meiosis. Short regions of strand separation (300 base pairs long) were seen in DNA molecules prepared for electron microscopy by the aqueous spreading technique. These regions were clustered along the DNA. The time course of their appearance indicated that the denatured regions were present during the periods of premeiotic DNA replication and recombination. A similar pattern of denaturation was also detected in the DNA from vegetatively grown cells of a conditional cdc8 mutant, which is defective in DNA replication.  相似文献   

4.
We have studied the meiotic segregation of a chromosome length polymorphism (CLP) in the yeast Saccharomyces cerevisiae. The neopolymorphism frequently observed within the smallest chromosomes (I, VI, III and IX) is not completely understood. We focused on the analysis of the structure of chromosome I in 88 segregants from a cross between YNN295 and FL100trp. Strain FL100trp is known to carry a reciprocal translocation between the left arm of chromosome III and the right arm of chromosome I. PCR and Southern hybridization analyses were performed and a method for the rapid detection of chromosome I rearrangements was developed. Seven chromosome I types were identified among the 88 segregants. We detected 22 recombination events between homologous chromosomes I and seven ectopic recombination events between FL100trp chromosome III and YNN295 chromosome I. These recombination events occurred in 20 of the 22 tetrads studied (91%). Nine tetrads (41%) showed two recombination events. This showed that homologous recombination involving polymorphic homologues or heterologous chromosomes is the main source of neopolymorphism. Only one of the seven chromosome I variants resulted from a transposition event rather than a recombination event. We demonstrated that a Ty1 element had transposed within the translocated region of chromosome I, generating mutations in the 3′ LTR, at the border between U5 and PBS. Received: 7 May 1999 / Accepted: 14 February 2000  相似文献   

5.
S L Kelly  J M Parry 《Mutation research》1983,108(1-3):109-120
Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.  相似文献   

6.
Recombinationless meiosis in Saccharomyces cerevisiae.   总被引:27,自引:11,他引:27       下载免费PDF全文
We have utilized the single equational meiotic division conferred by the spo13-1 mutation of Saccharomyces cerevisiae (S. Klapholtz and R. E. Esposito, Genetics 96:589-611, 1980) as a technique to study the genetic control of meiotic recombination and to analyze the meiotic effects of several radiation-sensitive mutations (rad6-1, rad50-1, and rad52-1) which have been reported to reduce meiotic recombination (Game et al., Genetics 94:51-68, 1980); Prakash et al., Genetics 94:31-50, 1980). The spo13-1 mutation eliminates the meiosis I reductional segregation, but does not significantly affect other meiotic events (including recombination). Because of the unique meiosis it confers, the spo13-1 mutation provides an opportunity to recover viable meiotic products in a Rec- background. In contrast to the single rad50-1 mutant, we found that the double rad50-1 spo13-1 mutant produced viable ascospores after meiosis and sporulation. These spores were nonrecombinant: meiotic crossing-over was reduced at least 150-fold, and no increase in meiotic gene conversion was observed over mitotic background levels. The rad50-1 mutation did not, however, confer a Rec- phenotype in mitosis; rather, it increased both spontaneous crossing-over and gene conversion. The spore inviability conferred by the single rad6-1 and rad52-1 mutations was not eliminated by the presence of the spo13-1 mutation. Thus, only the rad50 gene has been unambiguously identified by analysis of viable meiotic ascospores as a component of the meiotic recombination system.  相似文献   

7.
The MMS4 gene of Saccharomyces cerevisiae was originally identified due to its sensitivity to MMS in vegetative cells. Subsequent studies have confirmed a role for MMS4 in DNA metabolism of vegetative cells. In addition, mms4 diploids were observed to sporulate poorly. This work demonstrates that the mms4 sporulation defect is due to triggering of the meiotic recombination checkpoint. Genetic, physical, and cytological analyses suggest that MMS4 functions after the single end invasion step of meiotic recombination. In spo13 diploids, red1, but not mek1, is epistatic to mms4 for sporulation and spore viability, suggesting that MMS4 may be required only when homologs are capable of undergoing synapsis. MMS4 and MUS81 are in the same epistasis group for spore viability, consistent with biochemical data that show that the two proteins function in a complex. In contrast, MMS4 functions independently of MSH5 in the production of viable spores. We propose that MMS4 is required for the processing of specific recombination intermediates during meiosis.  相似文献   

8.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

9.
Competing crossover pathways act during meiosis in Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
Argueso JL  Wanat J  Gemici Z  Alani E 《Genetics》2004,168(4):1805-1816
In Saccharomyces cerevisiae the MSH4-MSH5, MLH1-MLH3, and MUS81-MMS4 complexes act to promote crossing over during meiosis. MSH4-MSH5, but not MUS81-MMS4, promotes crossovers that display interference. A role for MLH1-MLH3 in crossover control is less clear partly because mlh1Delta mutants retain crossover interference yet display a decrease in crossing over that is only slightly less severe than that seen in msh4Delta and msh5Delta mutants. We analyzed the effects of msh5Delta, mlh1Delta, and mms4Delta single, double, and triple mutants on meiotic crossing over at four consecutive genetic intervals on chromosome XV using newly developed computer software. mlh1Delta mms4Delta double mutants displayed the largest decrease in crossing over (13- to 15-fold) of all mutant combinations, yet these strains displayed relatively high spore viability (42%). In contrast, msh5Delta mms4Delta and msh5Delta mms4Delta mlh1Delta mutants displayed smaller decreases in crossing over (4- to 6-fold); however, spore viability (18-19%) was lower in these strains than in mlh1Delta mms4Delta strains. These data suggest that meiotic crossing over can occur in yeast through three distinct crossover pathways. In one pathway, MUS81-MMS4 promotes interference-independent crossing over; in a second pathway, both MSH4-MSH5 and MLH1-MLH3 promote interference-dependent crossovers. A third pathway, which appears to be repressed by MSH4-MSH5, yields deleterious crossovers.  相似文献   

10.
Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA.  相似文献   

11.
Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.  相似文献   

12.
R Padmore  L Cao  N Kleckner 《Cell》1991,66(6):1239-1256
In synchronous cultures of S. cerevisiae undergoing meiosis, an early event in the meiotic recombination pathway, site-specific double strand breaks (DSBs), occurs early in prophase, in some instances well before tripartite synaptonemal complex (SC) begins to form. This observation, together with previous results, supports the view that events involving DSBs are required for SC formation. We discuss the possibility that the mitotic pathway for recombinational repair of DSBs served as the primordial mechanism for connecting homologous chromosomes during the evolution of meiosis. DSBs disappear during the period when tripartite SC structure is forming and elongating (zygotene); presumably, they are converted to another type of recombination intermediate. Neither DSBs nor mature recombinant molecules are present when SCs are full length (pachytene). Mature reciprocally recombinant molecules arise at the end of or just after pachytene. We suggest that the SC might coordinate recombinant maturation with other events of meiosis.  相似文献   

13.
Jiao K  Bullard SA  Salem L  Malone RE 《Genetics》1999,152(1):117-128
Early exchange (EE) genes are required for the initiation of meiotic recombination in Saccharomyces cerevisiae. Cells with mutations in several EE genes undergo an earlier reductional division (MI), which suggests that the initiation of meiotic recombination is involved in determining proper timing of the division. The different effects of null mutations on the timing of reductional division allow EE genes to be assorted into three classes: mutations in RAD50 or REC102 that confer a very early reductional division; mutations in REC104 or REC114 that confer a division earlier than that of wild-type (WT) cells, but later than that of mutants of the first class; and mutations in MEI4 that do not significantly alter the timing of MI. The very early mutations are epistatic to mutations in the other two classes. We propose a model that accounts for the epistatic relationships and the communication between recombination initiation and the first division. Data in this article indicate that double-strand breaks (DSBs) are not the signal for the normal delay of reductional division; these experiments also confirm that MEI4 is required for the formation of meiotic DSBs. Finally, if a DSB is provided by the HO endonuclease, recombination can occur in the absence of MEI4 and REC104.  相似文献   

14.
We have identified two novel intermediates of homothallic switching of the yeast mating type gene, from MATa to MAT alpha. Following HO endonuclease cleavage, 5' to 3' exonucleolytic digestion is observed distal to the HO cut, creating a 3'-ended single-stranded tail. This recision is more extensive in a rad52 strain unable to switch. Surprisingly, the proximal side of the HO cut is protected from degradation; this stabilization depends on the presence of the silent copy donor sequences. A second intermediate was identified by a quantitative application of the polymerase chain reaction (PCR). The Y alpha-MAT distal covalent fragment of the switched product appears 30 min prior to the appearance of the MAT proximal Y alpha junction. No covalent joining of MAT distal to HML distal sequences is detected. We suggested that the MAT DNA distal to the HO cut invades the intact donor and is extended by DNA synthesis. This step is prevented in a rad52 strain. These intermediates are consistent with a model for MAT switching in which only the distal side of the HO cut is initially active in strand invasion and transfer of information from the donor.  相似文献   

15.
Summary Psoralen photoreaction with DNA produces interstrand crosslinks, which require the activity of excision and recombinational pathways for repair. Yeast replicating plasmids, carrying the HIS3, TRP1, and URA3 genes, were photoreacted with psoralen in vitro and transfected into Saccharomyces cerevisiae cells. Repair was assayed as the relative transformation efficiency. A recombination-deficient rad52 strain was the least efficient in the repair of psoralen-damaged plasmids; excision repair-deficient rad1 and rad3 strains had repair efficiencies intermediate between those of rad52 and RAD cells. The level of repair also depended on the conditions of transformant selection; repair was more efficient in medium lacking tryptophan than in medium from which either histidine or uracil was omitted. The plasmid repair differential between these selective media was greatest in rad1 cells, and depended on RAD52. Plasmid-chromosome recombination was stimulated by psoralen damage, and required RAD52 function. Chromosome to plasmid gene conversion was seen most frequently at the HIS3 locus. In RAD and rad3 cells, the majority of the conversions were associated with plasmid integration, while in rad1 cells most were non-crossover events. Plasmid to chromosome gene conversion was observed most frequently at the TRP1 locus, and was accompanied by plasmid loss.  相似文献   

16.
During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.  相似文献   

17.
Clinical preparations of bleomycins (BM) were tested for their recombinogenicity and mutagenicity at relatively high survival levels in the simple eucaryote, Saccharomyces cerevisiae. More than a dozen test loci or genetic intervals were assayed for bleomycin-induced mutation or recombination. Treatments of stationary phase diploid yeast routinely results in 25--75% inactivation. The antibiotic was mildly to very highly recombinogenic and mutagenic, with one exception. The amount of bleomycin-induced mutation, gene conversion or crossing-over depended upon the particular genetic markers assayed. The drug was also potently recombinogenic in yeast cells growing in the presence of BM. These results contrast with the finding that this antitumor agent was not mutagenic in the Salmonella/mammalian microsome mutagenicity test; possible explanation of this difference are given.  相似文献   

18.
Cyclic variation in mutation induction and lethality was found following X-irradiation during meiosis in Saccharomyces cerevisiae. An enhanced mutagenic response was found in meiotic G1 phase cells in comparison to cells later in meiosis, similar to the response shown during mitosis, but meiotic G1 phase cells appeared more resistant to the lethal effects of X-irradiation than mitotic G1 phase cells. Resistance to the lethal effects of X-rays was found during meiotic DNA synthesis in the strain SK1, which may indicate the operation of a sister-chromatid exchange repair mechanism. A difference was found between gene conversion which appeared to be at a maximum by the end of meiotic DNA synthesis and reciprocal recombination, which could be induced up to prophase I.  相似文献   

19.
Maloisel L  Bhargava J  Roeder GS 《Genetics》2004,167(3):1133-1142
A screen for mutants of budding yeast defective in meiotic gene conversion identified a novel allele of the POL3 gene. POL3 encodes the catalytic subunit of DNA polymerase delta, an essential DNA polymerase involved in genomic DNA replication. The new allele, pol3-ct, specifies a protein missing the last four amino acids. pol3-ct shows little or no defect in DNA replication, but displays a reduction in the length of meiotic gene conversion tracts and a decrease in crossing over. We propose a model in which DNA synthesis determines the length of strand exchange intermediates and influences their resolution toward crossing over.  相似文献   

20.
DNA polymerases influence genome stability through their involvement in DNA replication, response to DNA damage, and DNA repair processes. Saccharomyces cerevisiae possess four non-essential DNA polymerases, Pol λ, Pol η, Pol ζ, and Rev1, which have varying roles in genome stability. In order to assess the contribution of the non-essential DNA polymerases in genome stability, we analyzed the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant in microhomology mediated repair, due to recent studies linking some of these DNA polymerases to this repair pathway. Our results suggest that the length and quality of microhomology influence both the overall efficiency of repair and the involvement of DNA polymerases. Furthermore, the non-essential DNA polymerases demonstrate overlapping and redundant functions when repairing double-strand breaks using short microhomologies containing mismatches. Then, we examined genome-wide mutation accumulation in the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant compared to wild type cells. We found a significant decrease in the overall rate of mutation accumulation in the quadruple mutant cells compared to wildtype, but an increase in frameshift mutations and a shift towards transversion base-substitution with a preference for G:C to T:A or C:G. Thus, the non-essential DNA polymerases have an impact on the nature of the mutational spectrum. The sequence and functional homology shared between human and S. cerevisiae non-essential DNA polymerases suggest these DNA polymerases may have a similar role in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号