共查询到20条相似文献,搜索用时 0 毫秒
1.
A thermoresponsive cationic copolymer, poly( N-isopropylacrylamide- co- N-(3-(dimethylamino)propyl)methacrylamide)- b-polyethyleneimine (P(NIPAAm- co-NDAPM)- b-PEI), was designed and synthesized as a potential nonviral gene vector. The lower critical solution temperature (LCST) of P(NIPAAm- co-NDAPM)- b-PEI in water measured by UV-vis spectroscopy was 38 degrees C. P(NIPAAm- co-NDAPM)- b-PEI as the gene vector was evaluated in terms of cytotoxicity, buffer capability determined by acid-base titration, DNA binding capability characterized by agarose gel electrophoresis and particle size analysis, and in vitro gene transfection. P(NIPAAm- co-NDAPM)- b-PEI copolymer exhibited lower cytotoxicity in comparison with 25 kDa PEI. Gel retardation assay study indicated that the copolymer was able to bind DNA completely at N/P ratios higher than 30. At 27 degrees C, the mean particle sizes of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes decreased from 1200 to 570 nm corresponding to the increase in N/P ratios from 10 to 60. When the temperature changed to 37 degrees C, the mean particle sizes of complexes decreased from 850 to 450 nm correspondingly within the same N/P ratio range due to the collapse of thermoresponsive PNIPAAm segments. It was found that the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes was higher than or comparable to that of 25 kDa PEI/DNA complexes at their optimal N/P ratios. Importantly, the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes could be adjusted by altering the transfection and cell culture temperature. 相似文献
2.
Weecharangsan W Opanasopit P Ngawhirunpat T Rojanarata T Apirakaramwong A 《AAPS PharmSciTech》2006,7(3):E74-E79
The purpose of this research was to evaluate chitosan lactate (CL) of different molecular weights (MWs) as a DNA complexing
agent for its efficiency in transfecting COS-1 cells (green monkey fibroblasts) and its effect on cell viability compared
with polyethylenimine (PEI), a commercially available cationic polymer. CL and chitosan base dissolved in dilute acetic acid
(chitosan acetate, [CA]) of different MWs (20, 45, 200, 460 kDa) and N/P ratios (2∶1, 4∶1, 8∶1, 12∶1, 24∶1) formed complexes
with pSV β-galactosidase plasmid DNA. The complexes were characterized by agarose gel electrophoresis and investigated for
their ability to transfect COS-1 cells compared with PEI. Additionally, the effect of CL on the viability of COS-1 cells was
investigated using 3-(4,5-dimethyliazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The binding of CL/DNA and CA/DNA
was dependent on chitosan MWs. The N/P ratio of CL to completely form the complex with the DNA was higher than that of CA.
Both CL and CA were comparable in transfection efficiencies at an N/P ratio of 12∶1, but less efficient than PEI (P<.05). The cell viability in the presence of CL and CA at all MWs was over 90%, whereas that of PEI-treated cells was ≈50%.
These results suggest the advantage of CL for in vitro gene transfection, with the ease of preparation of polymer/DNA complexes
and low cytotoxicity.
Published: August 4, 2006 相似文献
3.
A head-tail type polycation block copolymer, which is composed of the polyamidoamine (PAMAM) dendron and poly(L-lysine) (PLL) blocks, was newly designed as a nonviral gene vector in this study. This block copolymer (PAMAM dendron-PLL) was successfully synthesized in two steps: the synthesis of the PAMAM dendron block and the polymerization of the PLL block from the PAMAM dendron block. PAMAM dendron and PLL blocks in block copolymer showed independent deprotonation behavior, and their pK(a) were determined to be 6.8 and 9.0, respectively. The complexation with pDNA was evaluated by gel retardation assay and dye exclusion assay, and both assays indicated that pDNA was selectively complexed with PLL block of block copolymer. Also, the PAMAM dendron-PLL poplyplexes showed 10(2) fold higher transfection efficiency to HeLa cells as that for PLL polyplexes. This might be due to the buffering effect of the PAMAM dendron block. This block copolymer could produce a function share in each block, i.e., tail block complexed with pDNA and head block showed a buffering effect. This molecular design of the head-tail type block copolymer might provide a new approach for realizing in vivo gene therapy. 相似文献
4.
Despite some progress in the field of gene transfer into hard-to-transfect cells, so far an efficient nonviral method for monocytes has not been available. A comparison of plasmid DNA with capped and polyadenylated mRNA for enhanced green fluorescent protein gene delivery into the commonly used monocytic cell lines U937 and THP-1 suggested that limited DNA trafficking may be the underlying cause of poor transfection results. As Nucleofector technology delivers DNA (or mRNA) straight into the nucleus, we obtained nucleofection efficiencies of up to 80% without significant cell toxicity. Moreover, as the DNA quickly reaches the nucleus, nucleofected cells were ready for analysis after only 2–6 h. The technique is suitable not only for monocytes but also for other hard-to-transfect cells. 相似文献
5.
We recently developed a novel family of cationic lipids consisting of a polyamidoamine (PAMAM) dendron and two dodecyl chains. Their transfection activity increases with increasing generation of the dendron moiety [Takahashi et al. (2003) Bioconjugate Chem. 14, 764-773]. In the present study, to elucidate the effect of hydrophobic tail moieties of the dendron-bearing lipids, two kinds of PAMAM G3 dendron-bearing lipids were synthesized with different alkyl lengths, DL-G3-2C18 and DL-G3-2C12. Their functions as gene vectors were compared. Irrespective of their different alkyl chain lengths, these dendron-bearing lipids formed complexes with plasmid DNA with similar efficiency. However, their complex sizes differed markedly: DL-G3-2C18 lipoplexes exhibited much smaller diameters than DL-G3-2C12 lipoplexes. Interaction of the lipoplexes with heparin revealed that the DL-G3-2C18 lipoplexes required more heparin than DL-G3-2C12 lipoplexes to cause dissociation of plasmid DNA from the lipoplexes. Although the DL-G3-2C12 lipoplexes and DL-G3-2C18 lipoplexes transfected CV1 cells with similar efficiency in the absence of serum, only the latter retained high transfection activity in the presence of serum. These results indicate that hydrophobic interaction of alkyl chain moieties plays an important role in the increment of stability and the serum-resistant transfection activity for dendron-bearing lipid lipoplexes. 相似文献
6.
This paper investigates a series of dendrons based on the Newkome dendritic scaffold that displays a naturally occurring polyamine (spermine) on their surface. These dendrons have previously been shown to interact with DNA in a generation dependent manner with the more highly branched dendrons exhibiting a strong multivalency effect for the spermine surface groups. In this paper, we investigate the ability of these dendrons to transfect DNA into cells (human breast carcinoma cells, MDA-MB-231, and murine myoblast cells, C2C12) as determined by the luciferase assay. Although the dendrons are unable to transfect DNA in their own right, they are capable of delivering DNA in vitro when administered with chloroquine, which assists with escape from endocytic vesicles. The cytotoxicity of the dendrons was determined using the XTT assay, and it was shown that the dendrons were nontoxic either alone or in the presence of DNA. However, when administered with DNA and chloroquine, the most highly branched dendron did exhibit some cytotoxicity. This paper elucidates the relationship between in vitro transfection efficiency and toxicity. While transfection efficiencies are modest, the low toxicity of the dendrons, both in their own right, and in the presence of DNA, provides encouragement that this type of building block, which has a relatively high affinity for DNA, will provide a useful starting point for the further synthetic development of more effective gene transfection agents. 相似文献
7.
Development of efficient and safe gene carrier is the main hurdle for successful gene therapy till date. Poor water solubility and low transfection efficiency of chitosan are the main drawbacks to be efficient gene carrier for successful gene therapy. In this work, PAMAM conjugated chitosan was prepared through naphthalimide moiety by simple substitution reaction. The synthesis of the chitosan conjugates was confirmed by FTIR, 1H NMR and XRD analyses. The conjugates showed enhanced DNA binding capability compared to that of unmodified chitosan. Moreover, the conjugates showed minimal cytotoxicity compared to that of polyethyleneimine (PEI, 25 kDa) and also showed good blood compatibility with negligible haemolysis. The transfection efficiency of the conjugate was significantly increased compared to that of unmodified chitosan and it also surpassed the transfection efficiency by PEI. Therefore, PAMAM conjugated chitosan can be used safely as alternate efficient gene delivery vector in gene therapy. 相似文献
8.
Recently, we demonstrated that octadecyl chains are important as alkyl chain moieties of polyamidoamine (PAMAM) dendron-bearing lipids for their serum-resistant transfection activity [Bioconjugate Chem.2007, 18, 1349-1354]. Toward production of highly potent vectors, we examined the influence of the generation of dendron moiety on transfection activity of PAMAM dendron-bearing lipids having two octadecyl chains. We synthesized dendron-bearing lipids with PAMAM G1, G2, and G3 dendrons, designated respectively as DL-G1-2C(18), DL-G2-2C(18), and DL-G3-2C(18). The DL-G2-2C(18) and DL-G3-2C(18) interacted with plasmid DNA effectively and formed stable lipoplexes with small sizes and spherical shape. However, DL-G1-2C(18) interacted with plasmid DNA less effectively and formed tubular-shaped lipoplexes with lower stability and larger size. Cells took up DL-G2-2C(18) and DL-G3-2C(18) lipoplexes efficiently, but cellular uptake of the DL-G1-2C(18) lipoplexes was less efficient. Nevertheless, DL-G1-2C(18) lipoplexes achieved 100-10?000 times higher levels of transgene expression, which was evaluated using luciferase gene as a reporter gene. Confocal scanning laser microscopic analysis of intracellular behaviors of the lipoplexes revealed that DL-G1-2C(18) lipoplexes generated free plasmid DNA molecules in the cytosol more effectively than other lipoplexes did. Moderate binding ability of DL-G1-2C(18) might be responsible for generation of lipoplexes which deliver plasmid DNA into cells, liberate it in the cytoplasm, and induce efficient transgene expression. 相似文献
9.
为了提高聚乙烯亚胺(Polythylenimine,PEI)类载体对肿瘤细胞的靶向性同时降低其细胞毒性,先用1800DaPEI制备了交联低分子量PEI,然后将人转铁蛋白与之偶联,得到了新型肿瘤靶向性人转铁蛋白偶联交联聚乙烯亚胺基因载体(TCP)。对所得的TCP的理化特性经行了表征,并检测了其细胞毒性。采用TCP介导pGL-3和pEGFP分别对293T、HepG2和Hela细胞系进行体外转染实验。结果表明:TCP是一种低毒高效的基因载体,在肿瘤细胞中的转染效率显著增强,因为其二硫键可在细胞内还原降解,而且通过偶联的转铁蛋白配体与肿瘤细胞表达的转铁蛋白受体间的相互作用,可增强该载体对肿瘤细胞的转染效率和靶向性。 相似文献
10.
Zhang Z Sha X Shen A Wang Y Sun Z Gu Z Fang X 《Biochemical and biophysical research communications》2008,370(3):478-482
A novel nonviral gene transfer vector was developed by modifying nanostructured lipid carrier (NLC) with cetylated polyethylenimine (PEI). Polycation nanostructured lipid carrier (PNLC) was prepared using the emulsion-solvent evaporation method. Its in vitro gene transfer properties were evaluated in the human lung adenocarcinoma cell line SPC-A1 and Chinese Hamster Ovary (CHO) cells. Enhanced transfection efficiency of PNLC was observed after the addition of triolein to the PNLC formulation and the transfection efficiency of the optimized PNLC was comparable to that of Lipofectamine™2000. In the presence of 10% serum the transfection efficiency of the optimal PNLC was not significantly changed in either cell line, whereas that of Lipofectamine™2000 was greatly decreased in both. Thus, PNLC is an effective nonviral gene transfer vector and the gene delivery activity of PNLC was enhanced after triolein was included into the PNLC formulation. 相似文献
11.
Nonviral vectors for gene therapy have recently received an increased impetus because of the inherent safety problems of the viral vectors, while their transfection efficiency is generally low compared to the viral vectors. The lack of the ability to escape from the endosomal compartments is believed to be one of the critical barriers to the intracellular delivery of noviral gene vectors. This study was devoted to the design and preparation of a novel ABC triblock copolymer for constructing a pH-responsive and targetable nonviral gene vector. The copolymer, lactosylated poly(ethylene glycol)-block-poly(silamine)-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (Lac-PEG-PSAO-PAMA), consists of lactosylated poly(ethylene glycol) (A-segment), a pH-responsive polyamine segment (B-segment), and a DNA-condensing polyamine segment (C-segment). The Lac-PEG-PSAO-PAMA spontaneously associated with plasmid DNA (pDNA) to form three-layered polyplex micelles with a PAMA/pDNA polyion complex (PIC) core, an uncomplexed PSAO inner shell, and a lactosylated PEG outer shell, as confirmed by 1H NMR spectroscopy. Under physiological conditions, the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles prepared at an N/P (number of amino groups in the copolymer/number of phosphate groups in pDNA) ratio above 3 were found to be able to condense pDNA, thus adopting a relatively small size (< 150 nm) and an almost neutral surface charge (zeta approximately +5 mV). The micelle underwent a pH-induced size variation (pH = 7.4, 132.6 nm --> pH = 4.0, 181.8 nm) presumably due to the conformational changes (globule-rod transition) of the uncomplexed PSAO chain in response to pH, leading to swelling of the free PSAO inner shell at lowered pH while retaining the condensed pDNA in the PAMA/pDNA PIC core. Furthermore, the micelles exhibited a specific cellular uptake into HuH-7 cells (hepatocytes) through asialoglycoprotein (ASGP) receptor-mediated endocytosis and achieved a far more efficient transfection ability of a reporter gene compared to the Lac-PEG-PSAO/pDNA and Lac-PEG-PAMA/pDNA polyplex micelles composed of the diblock copolymers and pDNA. The effect of hydroxychloroquine as an endosomolytic agent on the transfection efficiency was not observed for the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles, whereas the nigericin treatment of the cell as an inhibitor for the endosomal acidification induced a substantial decrease in the transfection efficiency, suggesting that the protonation of the free PSAO inner shell in response to a pH decrease in the endosome might lead to the disruption of the endosome through buffering of the endosomal cavity. Therefore, the polyplex micelle composed of ABC (ligand-PEG/pH-responsive segment/DNA-condensing segment) triblock copolymer would be a promising approach to a targetable and endosome disruptive nonviral gene vector. 相似文献
12.
A thermoresponsive chitosan-NIPAAm/vinyl laurate copolymer vector for gene transfection 总被引:1,自引:0,他引:1
Sun S Liu W Cheng N Zhang B Cao Z Yao K Liang D Zuo A Guo G Zhang J 《Bioconjugate chemistry》2005,16(4):972-980
A carboxyl-terminated N-isopropylacrylamide/vinyl laurate (VL) copolymer was prepared and coupled with chitosan (molecular weight = 2000) to produce a chitosan-NIPAAm/VL copolymer (PNVLCS) vector. The aqueous solution of PNVLCS displayed an obvious thermoresponsive behavior with a lower critical solution temperature (LCST) about 26 degrees C. The transmission electron microscopy (TEM) showed that the size of PNVLCS/DNA complexes varied with charge ratios (+/-), and the smaller nanoparticles were formed at higher charge ratios. DLS revealed that the size of complex particles was dependent on temperature. The results of temperature-variable circular dichroism (CD), UV, and electrophoresis retardation indicated that at lower charge ratios, DNA in the complexes assume a B conformation, whereas increasing charge ratios caused B --> C type conformation transformation; the dissociation-formation of PNVLCS/DNA complexes could be tuned by varying temperature: at 37 degrees C, the collapse of PNIPAAm in PNVLCS was favorable for the formation of compact complexes, shielding more DNA from exposure; at 20 degrees C, the hydrated and extended PNIPAAm chains facilitated the unpacking of DNA from PNVLCS, increasing the exposure of DNA. PNVLCS was used to transfer plasmid-encoding beta-galactosidase into C2C12 cells. The level of gene expression could be controlled by varying incubation temperature. The transfection efficiency of PNVLCS was well improved by temporarily reducing culture temperature to 20 degrees C, whereas naked DNA and Lipofectamine 2000 did not demonstrate the characteristics of thermoresponsive gene transfection. 相似文献
13.
Rasmussen TS Allman S Twigg G Butters TD Jensen HH 《Bioorganic & medicinal chemistry letters》2011,21(5):1519-1522
The potent and selective inhibitor of β-glucosidases, noeurostegine, was evaluated as an inhibitor of glucocerebrosidase (GCase) to give an IC50 value of 0.4 μM, being 250- and 150-fold better than N-butyl and N-nonyl noeurostegine, respectively. The parent noeurostegine and its N-butyl and N-nonyl alkylated congeners were also tested as pharmacological chaperones against a N370S GCase mutant. Of these, only noeurostegine, was found to increase enzyme activity, which in potency was comparable to that previously reported for isofagomine. 相似文献
14.
15.
Protein-polymer conjugates were investigated as nonviral gene delivery vectors. BSA-poly(dimethylamino) ethyl methacrylate (PDMA) nanoparticles (nBSA) were synthesized using in situ atom transfer radical polymerization (in situ ATRP) and BSA as a macroinitiator. The diameter and charge of nBSA was a function of the ATRP reaction time and ranged from 5 to 15 nm and +8.9 to +22.5, respectively. nBSA were able to condense plasmid DNA (pDNA) and form polyplexes with an average diameter of 50 nm. nBSA/pDNA polyplexes transfected cells with similar efficiencies or better as compared to linear and branched PEI. Interestingly, the nBSA particle diameter and charge did not affect pDNA complexation and transgene expression, indicating that the same gene delivery efficiency can be achieved with lower charge ratios. We believe that with the use of protein-polymer conjugates additional functionality could be introduced to polyplexes by using different protein cores and, thus, they pose an interesting alternative to the design of nonviral gene delivery vectors. 相似文献
16.
Nonviral gene therapy focuses intensely on nitrogen-containing macromolecules and lipids to condense and deliver DNA as a therapeutic for genetic human diseases. For the first time, DNA binding and gene transfection experiments compared phosphonium-containing macromolecules with their respective ammonium analogs. Conventional free radical polymerization of quaternized 4-vinylbenzyl chloride monomers afforded phosphonium- and ammonium-containing homopolymers for gene transfection experiments of HeLa cells. Aqueous size exclusion chromatography confirmed similar absolute molecular weights for all polyelectrolytes. DNA gel shift assays and luciferase expression assays revealed phosphonium-containing polymers bound DNA at lower charge ratios and displayed improved luciferase expression relative to the ammonium analogs. The triethyl-based vectors for both cations failed to transfect HeLa cells, whereas tributyl-based vectors successfully transfected HeLa cells similar to Superfect demonstrating the influence of the alkyl substituent lengths on the efficacy of the gene delivery vehicle. Cellular uptake of Cy5-labeled DNA highlighted successful cellular uptake of triethyl-based polyplexes, showing that intracellular mechanisms presumably prevented luciferase expression. Endocytic inhibition studies using genistein, methyl β-cyclodextrin, or amantadine demonstrated the caveolae-mediated pathway as the preferred cellular uptake mechanism for the delivery vehicles examined. Our studies demonstrated that changing the polymeric cation from ammonium to phosphonium enables an unexplored array of synthetic vectors for enhanced DNA binding and transfection that may transform the field of nonviral gene delivery. 相似文献
17.
Polycation vehicles used for in vitro gene delivery require alteration for successful application in vivo. Modification of polycations by direct grafting of additional components, e.g., poly(ethylene glycol) (PEG), either before or after DNA complexation, tend to interfere with polymer/DNA binding interactions; this is a particular problem for short polycations such as linear, beta-cyclodextrin-containing polycations (betaCDPs). Here, a new method of betaCDP polyplex (polycation/DNA composite structures) modification is presented that exploits the ability to form inclusion complexes between cyclodextrins and adamantane. Surface-PEGylated betaCDP polyplexes are formed by self-assembly of the polyplexes with adamantane-PEG conjugates. While unmodified polyplexes rapidly aggregate and precipitate in salt solutions, the PEGylated betaCDP polyplexes are stable at conditions of physiological salt concentration. Addition of targeting ligands to the adamantane-PEG conjugates allows for receptor-mediated delivery; galactosylated betaCDP-based particles reveal selective targeting to hepatocytes via the asialoglycoprotein receptor. Galactosylated particles transfect hepatoma cells with 10-fold higher efficiency than glucosylated particles (control), but show no preferential transfection in a cell line lacking the asialoglycoprotein receptor. Thus, surface modification of betaCDP-based polyplexes through the use of cyclodextrin/adamantane host/guest interactions endows the particles with properties appropriate for systemic application. 相似文献
18.
19.
DA strain and other strains of the TO subgroup of Theiler's murine encephalomyelitis viruses are members of the Cardiovirus genus of picornaviruses and produce a persistent demyelinating disease in mice. A recent study from our laboratory (W.-P. Kong, G. D. Ghadge, and R. P. Roos, Proc. Natl. Acad. Sci. USA 91:1796-1800, 1994) demonstrated that the leader, which is encoded at the N terminus of the Theiler's murine encephalomyelitis virus polyprotein, can be partially replaced by foreign sequences as well as completely deleted, with no loss of infectivity in BHK-21 cells. In this study, we have inserted up to 724 nucleotides into the leader coding region of an infectious DA clone. Recombinant viruses were produced, and the inserts were shown to be stable for at least three passages in BHK-21 cells. 相似文献
20.
Reversibly shielded DNA polyplexes based on bioreducible poly(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA) triblock copolymers were designed, prepared and investigated for in vitro gene transfection. Two PDMAEMA-SS-PEG-SS-PDMAEMA copolymers with controlled compositions, 6.6-6-6.6 and 13-6-13 kDa, were obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN-SS-PEG-SS-CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate; PEG: 6 kDa) as a macro-RAFT agent. Like their nonreducible PDMAEMA-PEG-PDMAEMA analogues, PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers could effectively condense DNA into small particles with average diameters less than 120 nm and close to neutral zeta potentials (0 ~ +6 mV) at and above an N/P ratio of 3/1. The resulting polyplexes showed excellent colloidal stability against 150 mM NaCl, which contrasts with polyplexes of 20 kDa PDMAEMA homopolymer. In the presence of 10 mM dithiothreitol (DTT), however, polyplexes of PDMAEMA-SS-PEG-SS-PDMAEMA were rapidly deshielded and unpacked, as revealed by significant increase of positive surface charges as well as increase of particle sizes to over 1000 nm. Release of DNA in response to 10 mM DTT was further confirmed by gel retardation assays. These polyplexes, either stably or reversibly shielded, revealed a low cytotoxicity (over 80% cell viability) at and below an N/P ratio of 12/1. Notably, in vitro transfection studies showed that reversibly shielded polyplexes afforded up to 28 times higher transfection efficacy as compared to stably shielded control under otherwise the same conditions. Confocal laser scanning microscope (CLSM) studies revealed that reversibly shielded polyplexes efficiently delivered and released pDNA into the perinuclei region as well as nuclei of COS-7 cells. Hence, reduction-sensitive reversibly shielded DNA polyplexes based on PDMAEMA-SS-PEG-SS-PDMAEMA are highly promising for nonviral gene transfection. 相似文献