首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A liquid accumulation medium and a solid isolation medium for primary identification of bacteria of the genus Acinetobacter have been proposed. Both media have identical composition and contain ethanol as the only source of carbon and energy and sodium ammonium phosphate as the source of nitrogen. Besides, the modification of Baumann's medium with sodium acetate as the source of carbon and potassium nitrate as the source of nitrogen has been developed. This modified medium has simplified composition and is not inferior to the above-mentioned media in selectivity, though its use gives less satisfactory results. The two proposed media, both liquid and solid, are recommended for wide use.  相似文献   

2.
Cultured cells of Lavandula vera entrapped with a photosensitive synthetic resin prepolymer (PVA-SbQ) produced blue pigments in the presence of l-cysteine as an inducer. The type of nitrogen sources in the culture medium greatly influenced the production of pigments. In the absence of an ammonium type nitrogen source, the induction of pigment synthesis by l-cysteine was observed in successive batches of the incubation without intermittent activation of the cells in the absence of l-cysteine. The pigment productivity of the entrapped cells was remarkably enhanced in the improved production medium containing potassium nitrate as the sole nitrogen source.  相似文献   

3.
侯学文  郭勇   《广西植物》1998,(2):169-172
本文通过改变培养基中的氮源组成,来研究氮源的变化对悬浮培养玫瑰茄细胞的生长及硝态氮同化指征(活体内硝酸还原酶活力)的影响。实验表明,仅在含NO-3的培养基中能检测到硝酸还原酶活力,而仅含NH+4的配方不能检测到该酶活力,表明硝酸还原酶是底物诱导酶。还探讨了培养基中不同的氮源组成对细胞生物量及pH的影响。  相似文献   

4.
Role of 3-Nitropropanoic acid in nitrate formation by Aspergillus flavus   总被引:2,自引:1,他引:1  
Doxtader, K. G. (Cornell University, Ithaca, N.Y.), and M. Alexander. Role of 3-nitropropanoic acid in nitrate formation by Aspergillus flavus. J. Bacteriol. 91:1186-1191. 1966.-Aspergillus flavus formed nitrate, 3-nitropropanoic acid (3-NPA), kojic acid, and a substance tentatively identified as N-formyl-N-hydroxy-glycine during growth in a medium with ammonium as sole nitrogen source. The concentration of the nitro compound reached a maximum prior to the appearance of nitrate; the 3-NPA level subsequently decreased with a concomitant increase in nitrate concentration. Replacement cultures of A. flavus produced nitrate from culture filtrates containing 3-NPA or from synthetic 3-NPA but not when supplied with fresh ammonium-sucrose medium, the nitrate-nitrogen formed being equivalent to 50% of the quantity of the 3-NPA-nitrogen initially present. Neither nitrate nor 3-NPA was synthesized by the fungus during growth in media with low pH or low ammonium concentrations. It is proposed that 3-NPA is either an intermediate or is in equilibrium with an intermediate in nitrification by the fungus.  相似文献   

5.
The processes of growing E. coli NAT 99-50R in a synthetic nutrient medium containing metal salts (iron nitrate, lutecium nitrate or cerium nitrate) were carried out. As shown in experiments, the addition of metal salts at different concentrations into the medium produced different impact on the penicillinase activity of the culture. This activity increased 7- to 10-fold when the bacteria were grown in a synthetic medium with iron nitrate added at a concentration of 0.0001% or with lutecium nitrate added at a concentration of 0.01%.  相似文献   

6.
The authors studied the effect of the various components of synthetic nutrient medium on glucose oxidase production in submerged cultivation ofAspergillus niger. It was found that the optimal glucose concentration was 3.5–6%. The only suitable source of nitrogen was nitrate nitrogen. If the medium contained ammonia nitrogen, glucose oxidase was not formed. The addition of citric acid to the medium very effectively stimulated theQ O 2 of the mycelium. Calcium added in the form of calcium nitrate had the same effect. A decrease in the Mg2+ ion concentration raised the activity of the enzyme, while inhibiting growth of the mycelium. If the initial pH was less than 4, glucose oxidase production was inhibited and did not start until the pH rose in the course of fermentation. Differences in the initial pH affected not only production of the enzyme, but also the formation of acids and the morphological appearance of the submerged mycelium. On the basis of the findings the synthetic medium for submerged cultivation ofAspergillus niger was modified, resulting in a 50–100% increase in glucose oxidase production as compared with the original medium.  相似文献   

7.
Monascus rubiginosus ATCC 16367 was cultivated aerobically in media containing ammonium and nitrate as nitrogen source. The pH of the medium was adjusted at different times, the pH of the nitrate medium being lowered to the pH of the ammonium medium and the pH of the ammonium medium raised to that of the nitrate. More phosphate was taken up on the nitrate medium, but potassium uptake did not start until 24h. On the ammonium medium, both were taken up in parallel from the beginning, but the amount of phosphate taken up never reached the same level as on nitrate medium. When the pH was adjusted, the uptakes changed, especially on the ammonium medium where a great increase in phosphate uptake was observed. More conidia were formed on the nitrate medium and more pigment on the ammonium medium. When the pH of either media was adjusted, the development of conidia and pigment production changed to that of the other control medium where the pH evolved normally in the direction of the change, regardless of the source of nitrogen. The reasons for the development of conidia on nitrate medium or where the pH is high, and the production of pigment on ammonium medium or at low pH is discussed.  相似文献   

8.
Microalgae cultures are receiving attention because of increasing biotechnological and biomedical production of active biomolecules. We evaluated various fertilizer-based culture media to scale up production of the marine microalga Phaeodactylum tricornutum for production of exocellular polysaccharides (EPS), soluble proteins, and cellular superoxide dismutase (SOD). The standard source of sodium nitrate was the same as that used in the synthetic f/2 culture medium and ammonium nitrate, urea, ammonium sulfate, and calcium nitrate as alternative sources of nitrogen. The maximum production of EPS was achieved in microalgae cells grown in the culture media containing 63 and 23% nitrogen from ammonium sulfate, and also in microalgae cells grown in the culture media containing 3% nitrogen from ammonium nitrate. The maximum production of cellular SOD was achieved in microalgae cells grown in the culture media containing 35 and 26% nitrogen from ammonium sulfate, and in the culture media containing 17% nitrogen from urea. The results suggest that it is possible to use a source of nitrogen, other than sodium nitrate, to scale up growth of P. tricornutum for production of EPS and SOD at reduced costs.  相似文献   

9.
We studied the role of light during exogenous assimilation of nitrate (the only source of nitrogen) by the callus cells of soybean (Glycine max). The nitrate consumed and assimilated by the photosynthetic (mixotrophic) and nonphotosynthetic cells (heterotrophic and chlorophyll-containing cells cultivated in the light in the same medium complemented with diuron) was quantified. The assimilated nitrate was quantified at the final stage of the growth cycle as the difference between the amount of nitrogen consumed from the medium and the amount of endogenous nitrate in the cells. Comparison of the assimilated nitrate quantities per accumulated dry biomass between the photosynthetic and nonphotosynthetic cells demonstrated that nearly 30% of nitrate is assimilated with the involvement of photosynthesis in a mixotrophic culture when nitrate is the only source of nitrogen  相似文献   

10.
经紫外诱变氯酸钾筛选,得到一个低硝酸还原酶(NADH:硝酸氧化还原酶.EC1.6.6.1.,以下简写为NR)活力的细胞株。其主要特征:NR活力低,约为正常型的1/5;对氯酸钾具有较强的抗性;不适合在单纯以硝酸盐为氮源的培养基上生长,能在以(NH_4)_2SO_4为唯一氮源的培养基上生长。蛋白电泳表明,此细胞株与正常型有不同的蛋白带。这些特征在没有选择压力的培养基上培养二年后,仍保持不变,说明此细胞株是一个遗传型的变异株。  相似文献   

11.
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.  相似文献   

12.
在林肯链霉菌生物合成林可霉素代谢调节的研究中,发现硝酸盐可明显促进林可霉素的生物合成.加入硝酸钾0.8%,林肯链霉菌合成林可霉素的产量可增加37%.在发酵96h之前加入硝酸盐均能促进林可霉毒的合成,但产量的增加随加入时间的延迟而降低.硝酸钾在促进产量的同时,使菌体生长减少,看来硝酸盐对林可霉素的合成与菌体生长之间起着调节作用.洗涤菌体试验指出,硝酸盐的加入诱导了林可霉素合成所需要的酶系,这可能是加入硝酸盐后,产生进一步氮代谢的结果;蛋白胨不能代替硝酸盐,进一步说明硝酸钾的作用并不是作为氮源利用.在蛋白质合成抑制剂氯霉素存在下,硝酸盐不再能促进林可霉素的合成,说明氯霉素抑制了硝酸盐或其代谢中间物所诱导的酶系的合成.同时还报导了镁盐促进林可霉素生物合成现象的初步观察结果.硫酸镁在促进林可霉素产量提高的同时,使菌体生长延迟.硫酸镁的这种作用机制可能是通过磷酸镁铵沉淀,降低了培养基中游离氨和可溶性磷酸盐浓度,解除了铵盐和磷酸盐对林可霉素合成的抑制.  相似文献   

13.
AIMS: The present investigation is aimed at assessing the suitability of cane molasses as a cheaper carbon and energy source for glucoamylase production using alginate-immobilized Thermomucor indicae-seudaticae. METHODS AND RESULTS: The culture variables for glucoamylase production were optimized by 'one-variable-at-a-time' strategy and response surface methodology (RSM). A high glucoamylase titre was attained when 40 alginate beads (c. 5x10(6) immobilized spores) were used to inoculate 50 ml of cane molasses (8%) medium in 250-ml Erlenmeyer flasks. Response surface optimization of fermentation parameters (cane molasses 7%, inoculum level 44 alginate beads per 50 ml of medium and ammonium nitrate 0.25%) resulted in 1.8-fold higher glucoamylase production (27 U ml(-1)) than that in the unoptimized medium (15 U ml(-1)). Enzyme production was also sustainable in 22 l of laboratory air-lift bioreactor. CONCLUSIONS: Cane molasses served as an excellent carbon and energy source for the economical production of glucoamylase, which was almost comparable with that in sucrose yeast-extract broth. The statistical model developed using RSM allowed determination of optimum levels of the variables for improving glucoamylase production. SIGNIFICANCE AND IMPACT OF THE STUDY: The cost of glucoamylase produced in cane molasses supplemented with ammonium nitrate was considerably lower (euro1.43 per million U) than in synthetic medium containing sucrose and yeast-extract (euro35.66 per million U). The reduction in fermentation time in air-lift bioreactor with sustainable glucoamylase titres suggested the feasibility of scale up of the process.  相似文献   

14.
Summary Chlorella vulgaris, grown with ammonium sulphate as nitrogen source, contains very little nitrate reductase activity in contrast to cells grown with potassium nitrate. When ammonium-grown cells are transferred to a nitrate medium, nitrate reductase activity increases rapidly and the increase is partially prevented by chloramphenicol and by p-fluorophenylalanine, suggesting that protein synthesis is involved. The increase in nitrate reductase activity is prevented by small quantities of ammonium; this inhibition is overcome, in part, by raising the concentration of nitrate. Although nitrate stimulates the development of nitrate reductase activity, its presence is not essential for the formation of the enzyme since this is formed when ammonium-grown cells are starved of nitrogen and when cells are grown with urea or glycine as nitrogen source. It is concluded that the formation of the enzyme is stimulated (induced) by nitrate and inhibited (repressed) by ammonium.  相似文献   

15.
The Neurospora crassa mutants nit-2 (lacking both nitrite and nitrate reductases) and nit-6 (lacking nitrite reductase) grown in the medium with ammonium chloride as a sole source of nitrogen discharged nitrate and nitrite ions into culture medium. For nit-2, the content of nitrate exceeded that of nitrite in both the homogenate of fungal cells and growth medium; moreover, this difference was more pronounced in the culture medium. Unlike nit-2, the content of nitrite in the cultivation medium of the nit-6 mutant irradiated with visible light for 30 min during the lag phase of carotenogenesis photoinduction displayed a trend of increase as compared with the dark control. Further (to 240 min) irradiation of cells, i.e., irradiation during biosynthesis of carotenoid pigments, leveled this difference.  相似文献   

16.
Summary Cells of Cyanidium caldarium grown with ammonia or ammonium nitrate as nitrogen source do not contain appreciable nitrate reductase activity. The alga develops the capacity to synthesize the enzyme when it is transferred from the ammonium medium to a nitrogen-free medium. Nitrate is not needed as an inducer and no enhancement in the rate of enzyme synthesis is observed when it is present. By contrast, whereas the synthesis of the enzyme in nitrogen-free medium proceeds at an increasing rate, in the nitrate medium it attains a stationary level after a short time.Nitrate grown cells possess variable amount of inactive nitrate reductase (from 9 to 60%) whereas in nitrogen-free medium the enzyme occurs principally in a fully active form. Addition of ammonia inactivates reversibly the preexisting enzyme. The inactive enzyme is measurable in the crude extract after activation by heating.It is suggested that in Cyanidium the inactivating effect of ammonia, which is the end product of nitrate reduction, in association with the repression of enzyme controls the level of nitrate reductase activity.  相似文献   

17.
In the course of a screening study for antibiotics using psychrophilic microorganisms a water-insoluble antibiotic complex, SP–351, was found in the culture filtrate of a psychrophilic actinomycete, strain No. 351. This active principle was isolated and characterized as a cyclicpolylactone antibiotic. The SP–351-producing strain was classified as a facultative psychrophile and identified as Streptomyces phaeochromogenes.

The main components of the antibiotic complex SP–351 changed with the composition of the culture medium but not with culture temperatures. Component A was exclusively produced in a medium composed of roasted soybean powder and glycerol; components B and C in a medium composed of soybean, glycerol and potassium nitrate; and components A and D in a synthetic medium containing a hydrocarbon, alcohol or ester as the sole carbon source. Maximum production of SP–351 from n-paraffin and methyl acetate was 10 and 15 mcg/ml, respectively.

SP–351 showed strong antibacterial activity against Gram-positive bacteria and acid-fast bacteria at 0.1~0.3 mcg/ml concentrations.  相似文献   

18.
The moderately thermophilic iron-oxidizing bacterium strain TI-1, which lacks enzyme systems involved in CO2 fixation, grows at 45°C in Fe2+ medium supplemented with yeast extract to give a maximum cell growth of 1.0 × 108 cells per ml, but does not grow in Fe2+ medium without yeast extract. To elucidate the physiology of the strain, a synthetic medium was developed. It was found that the best synthetic medium was Fe2+-6AA, containing Fe2+, salts, and the following six l-amino acids: alanine, aspartic acid, glutamic acid, arginine, serine, and histidine. In this medium, strain TI-1 showed a maximum cell growth of 10 × 108 cells/ml. The six amino acids in the Fe2+-6AA medium were used not only as a carbon source but also as a source of nitrogen. Inorganic nitrogen sources, such as ammonium ion, hydrazine, hydroxylamine, nitrite, and nitrate, were not used as a sole source of nitrogen, but rather strongly inhibited the utilization of the six amino acids at 1 mM. In the Fe2+ (10 mM)-6AA medium supplemented with 21 mM Fe3+, reduction of Fe3+ to Fe2+ that was dependent on the added amino acids was observed, suggesting another role of the amino acids in the growth of strain TI-1. Washed, intact cells of strain TI-1 had the activity to reduce Fe3+ to Fe2+.  相似文献   

19.
Experiments were carried out to examine the effects of nitrogen source on nitrogen incorporation into cyanophycin during nitrogen limitation and repletion, both with or without inhibition of protein synthesis, in cyanobacteria grown on either nitrate or ammonium. The use of nitrate and ammonium, 14N labeled in the growth medium and 15N labeled in the repletion medium, allows the determination of the source of nitrogen in cyanophycin using proton nuclear magnetic resonance spectroscopy. The data suggest that nitrogen from both the breakdown of cellular protein (14N) and directly from the medium (15N) is incorporated into cyanophycin. Nitrogen is incorporated into cyanophycin at different rates and to different extents, depending on the source of nitrogen (ammonium or nitrate) and whether the cells are first starved for nitrogen. These differences appear to be related to the activity of nitrate reductase in cells and to the possible expression of cyanophycin synthetase during nitrogen starvation.  相似文献   

20.
In Aspergillus fumigatus, the regulation of zinc homeostasis is strongly influenced by environmental pH. Thus, the study of zinc-regulated gene expression in A. fumigatus requires controlling variations in culture pH, as this may affect zinc availability. However, depending on the nitrogen source, the pH of the culture can change dramatically over time. In addition, due to the ubiquitous distribution of zinc and that it is an essential micronutrient required in minute amounts for optimal fungal growth, neither buffering of the culture media to prevent pH variations nor the use of chelating agents is advisable if mycelium is to be used for expression analyses. In this work, the growth of A. fumigatus in several culture media was examined in order to determine the conditions yielding mycelia suitable for gene expression analyses in acid and neutral media, regardless of zinc availability. Our results showed that a zinc-limiting synthetic basal medium could be readily converted into a zinc-replete one and subsequently into acid or neutral medium by using, respectively, ammonium or nitrate as nitrogen source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号