首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Xenopus, experiments performed with isolated ectoderm suggest that neural determination is a 'by default' mechanism, which occurs when bone morphogenetic proteins (BMPs) are antagonized by extracellular antagonists, BMP being responsible for the determination of epidermis. However, Ca(2+) imaging of intact Xenopus embryos reveals patterns of Ca(2+) transients which are generated via the activation of dihydropyridine-sensitive Ca(2+) channels in the dorsal ectoderm but not in the ventral ectoderm. These increases in the concentration of intracellular Ca(2+)([Ca(2+)]i) appear to be necessary and sufficient to orient the ectodermal cells towards a neural fate as increasing the [Ca(2+)]i artificially results in neuralization of the ectoderm. We constructed a subtractive cDNA library between untreated and caffeine-treated ectoderms (to increase [Ca(2+)]i) and then identified early Ca(2+)-sensitive target genes expressed in the neural territories. One of these genes, an arginine methyltransferase, controls the expression of the early proneural gene, Zic3. Here, we discuss the evidence for the existence of an alternative model to the 'by default' mechanism, where Ca(2+) plays a central regulatory role in the expression of Zic3, an early proneural gene, and in epidermal determination which only occurs when the Ca(2+)-dependent signalling pathways are inactive.  相似文献   

2.
3.
Epidermal differentiation in the ventral ectoderm of Xenopus embryos is regulated by the bone morphogenetic protein (BMP) pathway. However, it remains unclear how the BMP pathway is activated and induces the epidermal fate in the ventral ectoderm. Here, we identify a novel player in the BMP pathway that is required for epidermal differentiation during Xenopus early embryonic development. We show that Xenopus EIG121L (xEIG121L) protein, an evolutionarily conserved transmembrane protein, is expressed in the ventral ectoderm at the gastrula and neurula stages. Almost complete knockdown of xEIG121L protein with antisense morpholino oligonucleotides in early Xenopus embryos results in severe developmental defects, including the inhibition of epidermal differentiation and the induction of neural genes. Remarkably, our analysis shows that BMP/Smad1 signaling is severely suppressed in the xEIG121L knockdown ectoderm. Moreover, immunoprecipitation and immunostaining experiments suggest that xEIG121L protein physically interacts, and co-localizes, with BMP receptors. Thus, our results identify a novel regulator of the BMP pathway that has a positive role in BMP signaling and plays an essential role in epidermal differentiation during early embryonic development.  相似文献   

4.
5.
Xenopus GDF6, a new antagonist of noggin and a partner of BMPs.   总被引:5,自引:0,他引:5  
In Xenopus, ectodermal cell fates are determined by antagonistic interaction between the BMP subfamily of TGF-(beta) ligands and the organizer-specific secreted factors (e.g. noggin, chordin and follistatin). Inhibition of BMP function by these factors can convert cells from an epidermal to a neural cell fate. In this study, we report that GDF6, a new member of the Xenopus TGF-(beta) family, can function in antagonistic interaction with neural inducers. GDF6 induces epidermis and inhibits neural tissue in dissociated cells, and this activity is blocked by the presence of noggin. We demonstrate that GDF6 binds directly to the neural inducer noggin. Furthermore, we find that GDF6 and BMP2 can form heterodimers and the process seems to require cotranslation of the proteins in the same cells. In normal embryos, GDF6 and BMP2 are coexpressed in several places, including the edge of the neural plate at early neurula stages, suggesting that GDF6 may synergize with BMPs to regulate patterning of the ectoderm. Our data show for the first time that noggin can bind directly to and inhibit another TGF-(beta) family member: GDF6. In addition, BMP and GDF6 heterodimers may play an important role in vivo to regulate cell fate determination and patterning.  相似文献   

6.
Ca(2+)-dependent signalling processes are implicated in many aspects of flagella function in the green alga, Chlamydomonas. In this study, we examine the spatiotemporal dynamics of cytosolic Ca2+ ([Ca2+](cyt)) in single Chlamydomonas cells during the process of flagellar excision, using biolistically loaded calcium-responsive dyes. Acid-induced deflagellation occurred in parallel with a single transient elevation in whole-cell [Ca2+](cyt), which was absent in the acid deflagellation-deficient adf1 mutant. Deflagellation could also be induced by elevated external Ca2+ ([Ca2+](ext)), which promoted very rapid spiking of [Ca2+](cyt) across the whole cell and in the flagella. We also detected very rapid apically localised Ca2+ signalling events with an approximate duration of 500 msec. Ninety-seven per cent of deflagellation events coincided with a rapid elevation in [Ca2+](cyt) in the apical region of the cell, either in the form of a whole cell or an apically localised increase, indicating that [Ca2+](cyt) elevations in the apical region play an underlying role in deflagellation. Our data indicate that elevated [Ca2+](ext) acts to disrupt Ca2+ homeostasis which induces deflagellation by both Adf1-dependent and Adf1-independent mechanisms. Elevated [Ca2+](ext) also results in further [Ca2+](cyt) elevations after the main period of whole cell spiking which are very strongly associated with deflagellation, exhibit a high degree of apical localisation and are largely absent in the adf1 mutant. We propose that these later elevations may act as specific signals for deflagellation.  相似文献   

7.
In amphibian embryos the central nervous system derives from the dorsal region of the ectoderm. Molecular studies led to the formulation of the "neural default model" in which neural development is under the inhibitory control of members of the BMP family. These growth factors also act as epidermis inducers. The neural fate is revealed by factors secreted by the Spemann Organizer such as noggin, chordin, follistatin, Xnr3 and cerberus which act by blocking BMP signalling. We propose a new model for neural cell determination in which a signalling pathway controlled by an increase in intracellular calcium suppresses the epidermis fate and activates the neural fate instead. This increase in calcium is due to an influx through calcium channels of the L-type, expressed in ectodermal cells during gastrulation. The possible involvement of a calcium-dependent phosphatase (calcineurin) to inhibit the epidermis fate and a calcium-calmodulin kinase (CaMkinase II) which activates the neural fate is discussed.  相似文献   

8.
Wu MY  Ramel MC  Howell M  Hill CS 《PLoS biology》2011,9(2):e1000593
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.  相似文献   

9.
10.
11.
12.
In intact Xenopus embryos, an increase in intracellular Ca(2+) in the dorsal ectoderm is both necessary and sufficient to commit the ectoderm to a neural fate. However, the relationship between this Ca(2+) increase and the expression of early neural genes is as yet unknown. In intact embryos, studying the interaction between Ca(2+) signaling and gene expression during neural induction is complicated by the fact that the dorsal ectoderm receives both planar and vertical signals from the mesoderm. The experimental system may be simplified by using Keller open-face explants where vertical signals are eliminated, thus allowing the interaction between planar signals, Ca(2+) transients, and neural induction to be explored. We have imaged Ca(2+) dynamics during neural induction in open-face explants by using aequorin. Planar signals generated by the mesoderm induced localized Ca(2+) transients in groups of cells in the ectoderm. These transients resulted from the activation of L-type Ca(2+) channels. The accumulated Ca(2+) pattern correlated with the expression of the early neural precursor gene, Zic3. When the transients were blocked with pharmacological agents, the level of Zic3 expression was dramatically reduced. These data indicate that, in open-face explants, planar signals reproduce Ca(2+) -signaling patterns similar to those observed in the dorsal ectoderm of intact embryos and that the accumulated effect of the localized Ca(2+) transients over time may play a role in controlling the expression pattern of Zic3.  相似文献   

13.
Neural induction constitutes the first step in the generation of the vertebrate nervous system from embryonic ectoderm. Work with Xenopus ectodermal explants has suggested that epidermis is induced by BMP signals, whereas neural fates arise by default following BMP inhibition. In amniotes and ascidians, however, BMP inhibition does not appear to be sufficient for neural fate acquisition, which is initiated by FGF signalling. We decided to re-evaluate in the context of the whole embryo the roles of the BMP and FGF pathways during neural induction in Xenopus. We find that ectopic BMP activity converts the neural plate into epidermis, confirming that this pathway must be inhibited during neural induction in vivo. Conversely, inhibition of BMP, or of its intracellular effector SMAD1 in the non-neural ectoderm leads to epidermis suppression. In no instances, however, is BMP/SMAD1 inhibition sufficient to elicit neural induction in ventral ectoderm. By contrast, we find that neural specification occurs when weak eFGF or low ras signalling are combined with BMP inhibition. Using all available antimorphic FGF receptors (FGFR), as well as the pharmacological FGFR inhibitor SU5402, we demonstrate that pre-gastrula FGF signalling is required in the ectoderm for the emergence of neural fates. Finally, we show that although the FGF pathway contributes to BMP inhibition, as in other model systems, it is also essential for neural induction in vivo and in animal caps in a manner that cannot be accounted for by simple BMP inhibition. Taken together, our results reveal that in contrast to predictions from the default model, BMP inhibition is required but not sufficient for neural induction in vivo. This work contributes to the emergence of a model whereby FGF functions as a conserved initiator of neural specification among chordates.  相似文献   

14.
A dominant molecular explanation for neural induction is the 'default model', which proposes that the ectoderm is pre-programmed towards a neural fate, but is normally inhibited by endogenous BMPs. Although there is strong evidence favouring this in Xenopus, data from other organisms suggest more complexity, including an involvement of FGF and modulation of Wnt. However, it is generally believed that these additional signals also act by inhibiting BMPs. We have investigated whether BMP inhibition is necessary and/or sufficient for neural induction. In the chick, misexpression of BMP4 in the prospective neural plate inhibits the expression of definitive neural markers (Sox2 and late Sox3), but does not affect the early expression of Sox3, suggesting that BMP inhibition is required only as a late step during neural induction. Inhibition of BMP signalling by the potent antagonist Smad6, either alone or together with a dominant-negative BMP receptor, Chordin and/or Noggin in competent epiblast is not sufficient to induce expression of Sox2 directly, even in combination with FGF2, FGF3, FGF4 or FGF8 and/or antagonists of Wnt signalling. These results strongly suggest that BMP inhibition is not sufficient for neural induction in the chick embryo. To test this in Xenopus, Smad6 mRNA was injected into the A4 blastomere (which reliably contributes to epidermis but not to neural plate or its border) at the 32-cell stage: expression of neural markers (Sox3 and NCAM) is not induced. We propose that neural induction involves additional signalling events that remain to be identified.  相似文献   

15.
Marked accumulation of arachidonic acid (AA) and intracellular Ca2+ and Na+ overloads are seen during brain ischemia. In this study, we show that, in neurons, AA induces cytosolic Na+ ([Na+](cyt)) and Ca2+ ([Ca2+](cyt)) overload via a non-selective cation conductance (NSCC), resulting in mitochondrial [Na+](m) and [Ca2+](m) overload. Another two types of free fatty acids, including oleic acid and eicosapentaenoic acid, induced a smaller increase in the [Ca2+](i) and [Na+](i). RU360, a selective inhibitor of the mitochondrial Ca2+ uniporter, inhibited the AA-induced [Ca2+](m) and [Na+](m) overload, but not the [Ca2+](cyt) and [Na+](cyt) overload. The [Na+](m) overload was also markedly inhibited by either Ca2+-free medium or CGP3715, a selective inhibitor of the mitochondrial Na+(cyt)-Ca2+(m) exchanger. Moreover, RU360, Ca2+-free medium, Na+-free medium, or cyclosporin A (CsA) largely prevented AA-induced opening of the mitochondrial permeability transition pore, cytochrome c release, and caspase 3-dependent neuronal apoptosis. Importantly, Na+-ionophore/Ca2+-free medium, which induced [Na+](m) overload, but not [Ca2+](m) overload, also caused cyclosporin A-sensitive mitochondrial permeability transition pore opening, resulting in caspase 3-dependent apoptosis, indicating that [Na+](m) overload per se induced apoptosis. Our results therefore suggest that AA-induced [Na+](m) overload, acting via activation of the NSCC, is an important upstream signal in the mitochondrial-mediated apoptotic pathway. The NSCC may therefore act as a potential neuronal death pore which is activated by AA accumulation under pathological conditions.  相似文献   

16.
Induction and patterning of the telencephalon in Xenopus laevis   总被引:1,自引:0,他引:1  
We report an analysis of the tissue and molecular interplay involved in the early specification of the forebrain, and in particular telencephalic, regions of the Xenopus embryo. In dissection/recombination experiments, different parts of the organizer region were explanted at gastrula stage and tested for their inducing/patterning activities on either naive ectoderm or on midgastrula stage dorsal ectoderm. We show that the anterior dorsal mesendoderm of the organizer region has a weak neural inducing activity compared with the presumptive anterior notochord, but is able to pattern either neuralized stage 10.5 dorsal ectoderm or animal caps injected with BMP inhibitors to a dorsal telencephalic fate. Furthermore, we found that a subset of this tissue, the anterior dorsal endoderm, still retains this patterning activity. At least part of the dorsal telencephalic inducing activities may be reproduced by the anterior endoderm secreted molecule cerberus, but not by simple BMP inhibition, and requires the N-terminal region of cerberus that includes its Wnt-binding domain. Furthermore, we show that FGF action is both necessary and sufficient for ventral forebrain marker expression in neuralized animal caps, and possibly also required for dorsal telencephalic specification. Therefore, integration of organizer secreted molecules and of FGF, may account for patterning of the more rostral part of Xenopus CNS.  相似文献   

17.
Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an intracellular second messenger releasing Ca2+ from intracellular stores in different cell types. In addition, it is also active in triggering [Ca2+](i) increase when applied extracellularly and various underlying mechanisms have been proposed. Here, we used hP2Y(11)-transfected 1321N1 astrocytoma cells to unequivocally establish whether extracellular NAADP+ is an agonist of the P2Y(11) receptor, as previously reported for beta-NAD+ [I. Moreschi, S. Bruzzone, R.A. Nicholas, et al., Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes, J. Biol. Chem. 281 (2006) 31419-31429]. Extracellular NAADP+ triggered a concentration-dependent two-step elevation of [Ca2+](i) in 1321N1-hP2Y(11) cells, but not in wild-type 1321N1 cells, secondary to the intracellular production of IP(3), cAMP and cyclic ADP-ribose (cADPR). Specifically, the transient [Ca2+](i) rise proved to be related to IP(3) overproduction and to consequent Ca2+ mobilization, while the sustained [Ca2+](i) elevation was caused by the cAMP/ADP-ribosyl cyclase (ADPRC)/cADPR signalling cascade and by influx of extracellular Ca2+. In human granulocytes, endogenous P2Y(11) proved to be responsible for the NAADP+-induced cell activation (as demonstrated by the use of NF157, a selective and potent inhibitor of P2Y(11)), unveiling a role of NAADP+ as a pro-inflammatory cytokine. In conclusion, we provide unequivocal evidence for the activation of a member of the P2Y receptor subfamily by NAADP+.  相似文献   

18.
In vertebrates, neural induction occurs during gastrulation when ectodermal cells choose between two fates, neural and epidermal. In Xenopus, neural induction has been regarded as a default pathway as it occurs, in dorsal ectoderm, when ventralizing signals (mainly Bone Morphogenesis Proteins, BMPs, potent epidermal inducers) are inhibited by dorsalizing signals, including factors such as noggin, chordin, and follistatin. However, our previous studies demonstrated that an instructive signal triggered by the activation of L-type voltage-sensitive calcium channels, resulting in a transient increase in intracellular free calcium, appears to be a necessary and sufficient requirement to induce the competent ectoderm toward the neural pathway. Here we further explore the relationship between the Ca2+ transient signals observed and the expression of early neural genes. We have performed a subtractive approach to identify the genes which are transcribed early after the calcium signal and involved in neural determination. We have analyzed a candidate gene (xMLP) which encodes a MARCKS-like protein, a substrate for PKC. We show that this gene is activated by a calcium transient signals and induced by noggin overexpression. xMLP is expressed at the right time in presumptive neural territories. The putative role of xMLP in the process of neural induction is discussed.  相似文献   

19.
We recorded Ca2+ current and intracellular Ca2+ ([Ca2+](i)) in isolated adult rat dorsal root ganglion (DRG) neurons at 20 and 30 degrees C. In neurons bathed in tetraethylammonium and dialyzed with cesium, warming reduced resting [Ca2+](i) from 87 to 49 nM and the time constant of the decay of [Ca2+](i) transients (tau(r)) from 1.3 to 0.99s (Q(10)=1.4). The Buffer Index, the ratio between Ca2+ influx and Delta[Ca2+](i) (f I(ca)d(t)/Delta[Ca2+]i) , increased two- to threefold with warming. Neither inhibition of the plasma membrane Ca2+ -ATPase by intracellular sodium orthovanadate nor inhibition of Ca2+ uptake by the endoplasmic reticulum by thapsigargin plus ryanodine were necessary for the effects of warming on these parameters. In contrast, inhibition of the mitochondrial Ca2+ uniporter by intracellular ruthenium red largely reversed the effects of warming. Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 500 nM) increased resting [Ca2+](i) at 30 degrees C. Ten millimolar intracellular sodium prolonged the recovery of [Ca2+](i) transients to 10-40s. This effect was reversed by an inhibitor of mitochondrial Na(+)/Ca2+ -exchange (CGP 37157, 10 microM). Thus, mitochondrial Ca2+ uptake is necessary for the temperature-dependent increase in Ca2+ buffering and mitochondrial Ca2+ fluxes contribute to the control of [Ca2+](i) between 50 and 150 nM at 30 degrees C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号