首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The core histone tail domains play important roles in different stages of chromatin condensation. The tails are required for folding nucleosome arrays into secondary chromatin structures such as the approximately 30 nm diameter chromatin fiber and for mediating fiber-fiber interactions important for formation of tertiary chromatin structures. Crosslinking studies have demonstrated that inter-nucleosomal tail-DNA contacts appear in conjunction with salt-induced folding of nucleosome arrays into in higher order chromatin structures. However, since both folding of nucleosome arrays and fiber-fiber interactions take place simultaneously in >2-3 mM MgCl(2) such inter-nucleosome interactions may reflect short range (intra-array) or longer range (inter-array) interactions. Here, we describe a novel technique to specifically identify inter-array interactions mediated by the histone tail domains. In addition, we describe a new method for the preparation of H3/H4 tetramers.  相似文献   

2.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

3.
Zheng C  Hayes JJ 《Biopolymers》2003,68(4):539-546
The core histone tail domains are "master control switches" that help define the structural and functional characteristics of chromatin at many levels. The tails modulate DNA accessibility within the nucleosome, are essential for stable folding of oligonucleosome arrays into condensed chromatin fibers, and are important for fiber-fiber interactions involved in higher order structures. Many nuclear signaling pathways impinge upon the tail domains, resulting in posttranslational modifications that are likely to alter the charge, structure, and/or interactions of the core histone tails or to serve as targets for the binding of ancillary proteins or other enzymatic functions. However, currently we have only a marginal understanding of the molecular details of core histone tail conformations and contacts. Here we review data related to the structures and interactions of the core histone tail domains and how these domains and posttranslational modifications therein may define the structure and function of chromatin.  相似文献   

4.
《Biophysical journal》2021,120(17):3747-3763
Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences.  相似文献   

5.
6.
Liu  Guoqing  Zhao  Hongyu  Meng  Hu  Xing  Yongqiang  Cai  Lu 《Chromosoma》2021,130(1):27-40
Chromosoma - We present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was...  相似文献   

7.
Telomeric chromatin has different features with respect to bulk chromatin, since nucleosomal repeat along the chain is unusually short. We studied the role of telomeric DNA sequences on nucleosomal spacing in a model system. Nucleosomal arrays, assembled on a 1500-bp-long human telomeric DNA and on a DNA fragment containing 8 copies of the 601 strong nucleosome positioning sequence, have been studied at the single molecule level, by atomic force microscopy imaging. Random nucleosome positioning was found in the case of human telomeric DNA. On the contrary, nucleosome positioning on 601 DNA is characterized by preferential positions of nucleosome dyad axis each 200 bp. The AFM-derived nucleosome organization is in satisfactory agreement with that predicted by theoretical modeling, based on sequence-dependent DNA curvature and flexibility. The reported results show that DNA sequence has a main role, not only in mononucleosome thermodynamic stability, but also in the organization of nucleosomal arrays.  相似文献   

8.
9.
Salt-dependent oligomerization of nucleosomal arrays is related to fiber-fiber interactions and global chromosome structure. Previous studies have shown that the H2A/H2B and H3/H4 N-terminal domain (NTD) pairs are able to mediate array oligomerization. However, because of technical barriers, the function(s) of the individual core histone NTDs have not been investigated. To address this question, all possible combinations of "tailless" nucleosomal arrays were assembled from native and NTD-deleted recombinant Xenopus core histones and tandemly repeated 5 S rDNA. The recombinant arrays were characterized by differential centrifugation over the range of 0-50 mm MgCl2 to determine how each NTD affects salt-dependent oligomerization. Results indicate that all core histone NTDs participate in the oligomerization process and that the NTDs function additively and independently. These observations provide direct biochemical evidence linking all four core histone NTDs to the assembly and maintenance of global chromatin structures.  相似文献   

10.
11.
The roles and interdependence of DNA sequence and archaeal histone fold structure in determining archaeal nucleosome stability and positioning have been determined and quantitated. The presence of four tandem copies of TTTAAAGCCG in the polylinker region of pLITMUS28 resulted in a DNA molecule with increased affinity (DeltaDeltaG of approximately 700 cal mol(-1)) for the archaeal histone HMfB relative to the polylinker sequence, and the dominant, quantitative contribution of the helical repeats of the dinucleotide TA to this increased affinity has been established. The rotational and translational positioning of archaeal nucleosomes assembled on the (TTTAAAGCCG)(4) sequence and on DNA molecules selectively incorporated into archaeal nucleosomes by HMfB have been determined. Alternating A/T- and G/C-rich regions were located where the minor and major grooves, respectively, sequentially faced the archaeal nucleosome core, and identical positioning results were obtained using HMfA, a closely related archaeal histone also from Methanothermus fervidus. However, HMfA did not have similarly high affinities for the HMfB-selected DNA molecules, and domain-swap experiments have shown that this difference in affinity is determined by residue differences in the C-terminal region of alpha-helix 3 of the histone fold, a region that is not expected to directly interact with DNA. Rather this region is thought to participate in forming the histone dimer:dimer interface at the center of an archaeal nucleosome histone tetramer core. If differences in this interface do result in archaeal histone cores with different sequence preferences, then the assembly of alternative archaeal nucleosome tetramer cores could provide an unanticipated and novel structural mechanism to regulate gene expression.  相似文献   

12.
Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array–array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.  相似文献   

13.
The core histone tail domains are key regulators of eukaryotic chromatin structure and function and alterations in the tail-directed folding of chromatin fibers and higher order structures are the probable outcome of much of the post-translational modifications occurring in these domains. The functions of the tail domains are likely to involve complex intra- and inter-nucleosomal histone-DNA interactions, yet little is known about either the structures or interactions of these domains. Here we introduce a method for examining inter-nucleosome interactions of the tail domains in a model dinucleosome and determine the propensity of each of the four N-terminal tail domains to mediate such interactions in this system. Using a strong nucleosome "positioning" sequence, we reconstituted a nucleosome containing a single histone site specifically modified with a photoinducible cross-linker within the histone tail domain, and a second nucleosome containing a radiolabeled DNA template. These two nucleosomes were then ligated together and cross-linking induced by brief UV irradiation under various solution conditions. After cross-linking, the two templates were again separated so that cross-linking representing inter-nucleosomal histone-DNA interactions could be unambiguously distinguished from intra-nucleosomal cross-links. Our results show that the N-terminal tails of H2A and H2B, but not of H3 and H4, make internucleosomal histone-DNA interactions within the dinucleosome. The relative extent of intra- to inter-nucleosome interactions was not strongly dependent on ionic strength. Additionally, we find that binding of a linker histone to the dinucleosome increased the association of the H3 and H4 tails with the linker DNA region.  相似文献   

14.
Sullivan SA  Landsman D 《Proteins》2003,52(3):454-465
The three-helix, approximately 65-residue histone fold domain is the most structurally conserved part of the core histones H2A, H2B, H3, and H4. However, it evinces a notable degree of sequence variation within and between histone classes. We used two approaches to characterize sequence variation in these histone folds, toward elucidating their structure/function relationships and evolution. On the one hand we asked how much of the sequence variation seen in structure-based alignments of the folds maintains physicochemical properties at a position, and on the other, whether conservation correlates to structural importance, as measured by the number of residue-to-residue contacts a position makes. Strong physicochemical conservation or correlation of conservation to contacts would support the idea that functional constraints, rather than genetic drift, determines the observed range of variants at a given position. We used an 11-state table of physicochemical properties to classify each position in the core histone fold (CHF) alignments, and a public website (http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl) to score conservation. We found that, depending on histone class, from 38 to 77% of CHF positions are maximally conserved physicochemically, and that for H2B, H3, and H4 the degree to which a position is conserved correlates positively to the number of contacts made by the residue at that position in the crystal structure of the nucleosome core particle. We also examined the correlation between conservation and the type of contact (e.g., inter- or intrachain, histone-histone, or histone-DNA, etc.). For H2B, H3, and H4 we found a positive correlation between conservation and number of interchain protein contacts. No such correlation or statistical significance was found for DNA or intrachain contacts. This suggests that variations in the CHF sequences could be functionally constrained by requirements to make sufficient interchain histone contacts. We also suggest that inventory of histone residue variants can augment functional studies of histones. An example is presented for histone H3.  相似文献   

15.
An imidazole spin label has been used to study the accessibility and conformational state of tyrosines in both the nucleosome core particles and histone core extracted from chicken erythrocytes. About 40% of the tyrosyl residues in the histone core can be labeled under nondenaturing conditions. However, less than 15% of the tryosyls in the nucleosome core particle can be labeled even at 200- to 300-fold M excess of label. The effect of urea on the conformational state of the spin-labeled tyrosyls in both the nuclesome core particles and the histone core has been studied. Ionic effects on the spin-labeled nucleosome core have been investigated. Several conformational transitions are observed in the range of 1 mM NaCl to 2.5 M NaCl. Three major transitions are found at 0.1 M to 0.6 M, 0.7 M to 1.8 M and 2 M to 2.5 M NaCl, respectively. The observed changes can be interpreted as swelling and conformational change of the inner histone core, gradual separation of DNA from the histone core, and tightening of the histone core.  相似文献   

16.
The core histone tail domains are critical regulators of chromatin structure and function and modifications such as acetylation of lysine residues within the tails are central to this regulation. Studies have shown that the removal of core histone tail domains by trypsinization in which one-half to two-thirds of each core histone tail domain are removed in gross aspects mimics the acetylation of core histone tails. In addition, removal of the tails has been useful in understanding general tail function. Thus, removal of native core histone tails by trypsinization is a widely used method. In addition, many in vitro studies now employ core histones site-specifically modified with photo activatable cross-linking probes or fluorescent probes. However, in our experience, standard methods employing trypsinized donor chromatin for reconstitution of nucleosomes containing certain chemically modified histones lacking the core histone tail domains are not uniformly applicable. Here, we describe various methods for preparing nucleosomes containing a core histone modified with a cross-linking agent, APB, and lacking the core histone tail domains.  相似文献   

17.

Background

An organism’s DNA sequence is one of the key factors guiding the positioning of nucleosomes within a cell’s nucleus. Sequence-dependent bending anisotropy dictates how DNA is wrapped around a histone octamer. One of the best established sequence patterns consistent with this anisotropy is the periodic occurrence of AT-containing dinucleotides (WW) and GC-containing dinucleotides (SS) in the nucleosomal locations where DNA is bent in the minor and major grooves, respectively. Although this simple pattern has been observed in nucleosomes across eukaryotic genomes, its use for prediction of nucleosome positioning was not systematically tested.

Results

We present a simple computational model, termed the W/S scheme, implementing this pattern, without using any training data. This model accurately predicts the rotational positioning of nucleosomes both in vitro and in vivo, in yeast and human genomes. About 65 – 75% of the experimentally observed nucleosome positions are predicted with the precision of one to two base pairs. The program is freely available at http://people.rit.edu/fxcsbi/WS_scheme/. We also introduce a simple and efficient way to compare the performance of different models predicting the rotational positioning of nucleosomes.

Conclusions

This paper presents the W/S scheme to achieve accurate prediction of rotational positioning of nucleosomes, solely based on the sequence-dependent anisotropic bending of nucleosomal DNA. This method successfully captures DNA features critical for the rotational positioning of nucleosomes, and can be further improved by incorporating additional terms related to the translational positioning of nucleosomes in a species-specific manner.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-313) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
The N and C-terminal tail domains of the core histones play important roles in gene regulation, but the mechanisms through which they act are not known. These tail domains are highly positively charged and are the sites of numerous post-translational modifications, including many sites for lysine acetylation. Nucleosomes in which these tail domains have been removed by trypsin remain otherwise intact, and are used by many laboratories as a model system for highly acetylated nucleosomes. Here, we test the hypothesis that one role of the tail domains is to directly regulate the accessibility of nucleosomal DNA to other DNA-binding proteins. Three assays are used: equilibrium binding by a site-specific, DNA-binding protein, and dynamic accessibility to restriction enzymes or to a non-specific exonuclease. The effects of removal of the tail domains as monitored by each of these assays can be understood within the framework of the site exposure model for the dynamic equilibrium accessibility of target sites located within the nucleosomal DNA. Removal of the tail domains leads to a 1.5 to 14-fold increase in position-dependent equilibrium constants for site exposure. The smallness of the effect weighs against models for gene activation in which histone acetylation is a mandatory initial event, required to facilitate subsequent access of regulatory proteins to nucleosomal DNA target sites. Alternative roles for histone acetylation in gene regulation are discussed.  相似文献   

20.
Acetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains. We found that AF9-YEATS showed basal binding to the unmodified NCP and that it bound stronger to the NCP containing a single acetylation at one of K4, K9, K14, or K27 of H3, or to histone H4 multi-acetylated between K5 and K16. Crystal structures of AF9-YEATS in complex with an H4 peptide diacetylated either at K5/K8 or K8/K12 revealed that the aromatic cage of the YEATS domain recognized the acetylated K8 residue. Interestingly, E57 and D103 of AF9, both located outside of the aromatic cage, were shown to interact with acetylated K5 and K12 of H4, respectively, consistent with the increase in AF9-YEATS binding to the H4K8-acetylated NCP upon additional acetylation at K5 or K12. Finally, we show that a mutation of E57 to alanine in AF9-YEATS reduced the binding affinity for H4 multiacetylated NCPs containing H4K5ac. Our data suggest that the Kac-binding affinity of AF9-YEATS increases additively with the number of Kac in the histone tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号