首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Tree hollows are among the rarest habitats in today''s Central European managed forests but are considered key structures for high biodiversity in forests. To analyze and compare the effects of tree hollow characteristics and forest structure on diversity of saproxylic beetles in tree hollows in differently structured managed forests, we examined between 41 and 50 tree hollows in beech trees in each of three state forest management districts in Germany. During the two‐year study, we collected 283 saproxylic beetle species (5880 individuals; 22% threatened species), using emergence traps. At small spatial scales, the size of hollow entrance and the number of surrounding microhabitat structures positively influenced beetle diversity, while the stage of wood mould decomposition had a negative influence, across all three forest districts. We utilized forest inventory data to analyze the effects of forest structure in radii of 50–500 m around tree hollows on saproxylic beetle diversity in the hollows. At these larger spatial scales, the three forest management districts differed remarkably regarding the parameters that influenced saproxylic beetle diversity in tree hollows. In Ebrach, characterized by mostly deciduous trees, the amount of dead wood positively influenced beetle diversity. In the mostly coniferous Fichtelberg forest district, with highly isolated tree hollows, in contrast, only the proportion of beech trees around the focal tree hollows showed a positive influence on beetle diversity. In Kelheim, characterized by mixed forest stands, there were no significant relationships between forest structure and beetle diversity in tree hollows. In this study, the same local tree hollow parameters influenced saproxylic beetle diversity in all three study regions, while parameters of forest structure at larger spatial scales differed in their importance, depending on tree‐species composition.  相似文献   

2.
Data from a global network of large, permanent plots in lowland tropical forests demonstrate (1) that the phenomenon of tropical tree rarity is real and (2) that almost all the species diversity in such forests is due to rare species. Theoretical and empirically based reasoning suggests that many of these rare species are not as geographically widespread as previously thought. These findings suggest that successful strategies for conserving global tree diversity in lowland tropical forests must pay much more attention to the biogeography of rarity, as well as to the impact of climate change on the distribution and abundance of rare species. Because the biogeography of many tropical tree species is poorly known, a high priority should be given to documenting the distribution and abundance of rare tropical tree species, particularly in Amazonia, the largest remaining tropical forested region in the world.  相似文献   

3.
林业活动和森林片断化对甲虫多样性的影响及保护对策   总被引:7,自引:3,他引:4  
森林片断化是造成生物多样性丧失的主要原因之一,而林业活动是导致森林片断化的重要因素,同时也在森林恢复中起重要作用。本文从小尺度、局域尺度以及生物地理尺度(大尺度)3个生态尺度分析林业活动和森林片断化对甲虫多样性的影响。在小尺度下,林业活动能够通过改变森林生境或微生境的类型和特性而影响甲虫物种分布。在局域尺度下,林业活动(尤其是森林砍伐)往往能提高许多甲虫类群(如步甲)的物种丰富度(α多样性),这主要与来自周围环境物种扩散以及保留了若干耐受新环境能力较强的森林物种有关;然而,对森林生境依赖性很强的特有种受到了森林片断化的负面影响,面临局域种群灭绝的危险。在生物地理尺度下,林业活动(伐木或森林恢复)使森林生境单一化、异质性降低,从而导致对森林生境变化敏感的物种种群数量降低甚至灭绝。基于以上结果,可以归纳出3个基本原则用于指导林业管理,既能保证林业经济收益,又能维持森林生物多样性。首先,保留大面积的原始森林作为特有种的栖息环境基地,为这些物种在将来森林恢复后重新定居提供资源;其次,由于保护区内原始森林面积有限,且所代表的生境类型有限,所以发展依据自然干扰模式的新伐木方法十分必要;最后,依据自然规律(如火灾)进行森林恢复和天然演替,避免森林的单一化,丰富森林生境类型。  相似文献   

4.
Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010–2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no‐harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710–6742 Mt C. For the no‐harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long‐term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.  相似文献   

5.
6.
Preservation of woodland key habitats has become an integral part of biodiversity-oriented forest management in northern Europe. In Finland, brook-side spruce forests constitute the most important key-habitat type in terms of total area and timber volume. Our aim was to compare polypore diversity and the occurrence of red-listed species between brook-side key habitats and comparable sites of managed forest as controls. Furthermore, we assessed the importance of stand structural features to polypore communities, and contrasted regions with different land-use history. Altogether 69 key habitats and 70 controls were inventoried in four regions across southern Finland. A total of 28,023 surveyed dead-wood units had 3,307 occurrences of 114 species of which 25 species were red-listed. Key habitats hosted on average 28% (about two species) more polypore species (mainly deciduous-specialists) than controls because of a larger average volume of dead wood and a higher proportion of dead deciduous wood. However, the average number of red-listed species was low and did not differ between the two forest categories. We detected a landscape effect connected with the intensity and length of forest management history, with the highest numbers of all and red-listed species per site in eastern Finland. Volume and diversity of dead wood were the most important variables explaining variation in species richness. Presently, key habitats in managed forests appear to contribute only little to the conservation of red-listed polypore species.  相似文献   

7.
8.
Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost‐effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red‐listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies.  相似文献   

9.
1. This paper reviews and compares the effects of forest fire and timber harvest on mammalian abundance and diversity, throughout successional time in the boreal forest of North America. 2. Temporal trends in mammal abundance and diversity are generally similar for both harvested and burned stands, with some differences occurring in the initiation stage (0–10 years post disturbance). 3. Small mammals and ungulates are most abundant immediately post disturbance, and decrease as stands age. Lynxes and hares utilize mid-successional stands, but are rare in young and old stands. Bats, arboreal sciurids and mustelids increase in abundance with stand age, and are most abundant in old growth. 4. Substantial gaps in the data exist for carnivores; the response of these species to fire and harvest requires research, as predator–prey interactions can affect mammal community structure in both early and late successional stages. 5. The lack of explicit treatment of in-stand forest structure post disturbance, in the reviewed literature made comparisons difficult. Where forest structure was considered, the presence of downed woody material, live residual trees and standing dead wood were shown to facilitate convergence of mammal communities to a pre-disturbance state for both disturbance types. 6. Mammalian assemblages differed considerably between successional stages, emphasizing the importance of maintaining stands of each successional stage on the landscape when implementing forest management strategies.  相似文献   

10.
Tree hollows are key structures in forest ecosystems constituting long-lasting habitats and nutritional resources for many saproxylic arthropod species. Due to diverse microhabitat structures and conditions in tree hollows, they can support a broad range of species. However, in the past intensive management practices in parts of Europe reduced the abundance of tree hollows, resulting in a decrease and endangerment of species specialised in this tree habitat. We investigated 40 beech trees with hollows in 2014 and a subset of 23 of these trees in 2015 in a managed forest landscape in Germany. Using emergence traps we collected 89 beetle species of which 33% were on the Bavarian Red List. We described the tree characteristics, physical hollow characteristics, and their surrounding environment investigating their influence on α-diversity of non-Red List and Red List species. Furthermore, we investigated spatial (between tree hollows) and temporal (same tree hollow but different years) β-diversity, considering the importance of turnover and nestedness components on β-diversity. α-Diversity decreased with increasing decomposition of wood mould and increased with increasing area of hollow entrance in both years. Additional characteristics differed between years and between non-Red List and Red List species. β-Diversity was related to diameter at breast height, number of surrounding tree hollows, area of hollow entrance and a temperature gradient. We found a higher species turnover than nestedness between tree hollows and between years, indicating highly dynamic beetle communities spatially as well as temporally. To support and maintain the diversity of saproxylic beetles inhabiting tree hollows, the heterogeneity of microhabitats is important and should be supported by maintaining the diversity of differently structured and sized tree hollows.  相似文献   

11.
In this work, we studied the potentials offered by managed boreal forests and forestry to mitigate the climate change using forest‐based materials and energy in substituting fossil‐based materials (concrete and plastic) and energy (coal and oil). For this purpose, we calculated the net climate impacts (radiative forcing) of forest biomass production and utilization in the managed Finnish boreal forests (60°–70°N) over a 90‐year period based on integrated use forest ecosystem model simulations (on carbon sequestration and biomass production of forests) and life‐cycle assessment (LCA) tool. When studying the effects of management on the radiative forcing in a system integrating the carbon sink/sources dynamics in both biosystem and technosystem, the current forest management (baseline management) was used a reference management. Our results showed that the use of forest‐based materials and energy in substituting fossil‐based materials and energy would provide an effective option for mitigating climate change. The negative climate impacts could be further decreased by maintaining forest stocking higher over the rotation compared to the baseline management and by harvesting stumps and coarse roots in addition to logging residues in the final felling. However, the climate impacts varied substantially over time depending on the prevailing forest structure and biomass assortment (timber, energy biomass) used in substitution.  相似文献   

12.
Aims We compare performance of ecosystem classification maps and provincial forest inventory data derived from air photography in reflecting ground beetle (Coleoptera: Carabidae) biodiversity patterns that are related to the forest canopy mosaic. Our biodiversity surrogacy model based on remotely sensed tree canopy cover is validated against field-collected ground data.Methods We used a systematic sampling grid of 198 sites, covering 84 km 2 of boreal mixedwood forest in northwestern Alberta, Canada. For every site, we determined tree basal area, characterized the ground beetle assemblage and obtained corresponding provincial forest inventory and ecosystem classification information. We used variation partitioning, ordination and misclassification matrices to compare beetle biodiversity patterns explained by alternative databases and to determine model biases originating from air photo-interpretation.Important findings Ecosystem classification data performed better than canopy cover derived from forest inventory maps in describing ground beetle biodiversity patterns. The biodiversity surrogacy models based on provincial forest inventory maps and field survey generally detected similar patterns but inaccuracies in air photo-interpretation of relative canopy cover led to differences between the two models. Compared to field survey data, air photo-interpretation tended to confuse two Picea species and two Populus species present and homogenize stand mixtures. This generated divergence in models of ecological association used to predict the relationship between ground beetle assemblages and tree canopy cover. Combination of relative canopy cover from provincial inventory with other geo-referenced land variables to produce the ecosystem classification maps improved biodiversity predictive power. The association observed between uncommon surrogates and uncommon ground beetle species emphasizes the benefits of detecting these surrogates as a part of landscape management. In order to complement conservation efforts established in protected areas, accurate, high resolution, wide ranging and spatially explicit knowledge of landscapes under management is primordial in order to apply effective biodiversity conservation strategies at the stand level as required in the extensively harvested portion of the boreal forest. In development of these strategies, an in-depth understanding of vegetation is key.  相似文献   

13.
The young successional stages of boreal forests are an important habitat for many saproxylic species. These habitats are formed by disturbances such as forest fires and they are characterized by large volumes of dead wood and sun-exposed conditions. Today, young successional stages of natural origin are very rare in Fennoscandia and there is need for restoration. We constructed a large-scale field experiment in which we studied the effects of two restoration practices on beetle diversity: controlled burning and partial harvesting with creating different volumes of dead wood. We sampled beetles with flight-intercept traps recording a total of 56,031 individuals and 755 species. The species richness and abundance of both saproxylic and non-saproxylic beetles were increased by burning and harvesting but the volume of dead wood created on harvested sites had no short-term effect on species richness or abundance. Rare species, especially saproxylic ones, preferred burned sites and a similar trend was observed among red-listed and pyrophilous species. Burning and harvesting also resulted in different species assemblages and there were some additional differences according to the volume of dead wood. We conclude that fire can be successfully used in restoration of managed boreal forests to increase species diversity and to facilitate the recovery of declined species. However, long-term monitoring is needed to clarify the effects of the restoration practices, in particular those of creating dead wood without using fire.  相似文献   

14.
* Here, the diversity of arbuscular mycorrhizal (AM) fungi was determined in a boreal herb-rich coniferous forest in relation to environmental variables. * Root samples of five plant species (Fragaria vesca, Galeobdolon luteum, Hepatica nobilis, Oxalis acetosella and Trifolium pratense) were analysed from stands differing in age and forest management intensity. * Thirty-four Glomeromycota taxa (small-subunit ribosomal RNA gene (SSU rDNA) sequence groups) were detected from 90 root samples (911 clones), including eight new taxa. Sequence groups related to Glomus intraradices were most common (MO-G3 and MO-G13). Samples of H. nobilis were colonized by more AM fungal taxa (3.68 +/- 0.31) than those of O. acetosella (2.69 +/- 0.34), but did not differ significantly in this respect from those of F. vesca (3.15 +/- 0.38). Effects of forest management, host plant species (except above) or season on the number or composition of fungal taxa in root samples were not detected, and neither were they explained by environmental variables (vegetation, soil and light conditions). * This is the most taxon-rich habitat described to date in terms of root-colonizing Glomeromycota. The data demonstrate the importance of temperate coniferous forests as habitats for AM fungi and plants. Lack of obvious fungal community patterns suggests more complex effects of biotic and abiotic factors, and possibly no adverse effect of common forest management practices on AM fungal diversity.  相似文献   

15.
Compared to agricultural land and spruce plantations, central European beech-oak forests are often relatively close to natural conditions. However, forest management may alter these conditions. In Steigerwald, southern Germany, a large beech-dominated forest area, three management intensities were applied during the past 30–70 years. Here, we examined the influence of management intensity on saproxylic beetles in >100-year old mature stands at 69 sampling plots in 2004. We sampled beetles using flight-window traps and time standard direct searches. The community structure based on presence/absence data changed remarkably along the gradient from unmanaged to low-intensity to high-intensity management, but these differences were not evident using abundance data from flight interception traps. Saproxylic species richness decreased in intensively managed forests. Elateridae and threatened species richness peaked in unmanaged forests and in forests under low-intensity management. Saproxylic species richness was dependent on certain micro-habitat factors. These factors were (1) the amount of dead wood for Elateridae, overall and threatened saproxylic beetle richness; (2) the amount of flowering plants for Cerambycidae; (3) the richness of wood-inhabiting fungi for Staphylinidae, Melandryidae and overall saproxylic beetle richness; and (4) the frequency of Fomes fomentarius for threatened species. Species richness was better explained by plot factors, such as dead wood or fungi, than by management intensity. These results suggest that the natural variation of dead wood niches (decay stages, snag sizes, tree cavities and wood-inhabiting fungi species) must be maintained to efficiently conserve the whole saproxylic beetle fauna of beech forests. Also, intensive management may alter the specialised saproxylic beetle community even if the initial tree-species composition is maintained, which was the case in our study. For monitoring the ecological sustainability of forest management we must focus on threatened species. If structures alone are sampled then the amount of dead wood is the best indicator for a rich saproxylic beetle fauna.  相似文献   

16.
The influence of regional climate, biotope and host-plant variables on the frequency of occurrence of insect borers associated with infructescences of Protea species in the species-rich flora of the Cape Fynbos was investigated. Large samples of infructescences (n=1000) were collected on a seasonal basis and borers identified and quantified. Data were analysed using DECORANA and CANOCO so as to correlate environmental variables with borer occurrence. Distinct differences in frequency of occurrence of the various insect taxa were recorded on the various plant species studied. These differences were primarily accounted for by physical host-plant characteristics (infructescence and seed set variables), and secondarily, by biotope variables and climatic factors. Fynbos plant characteristics therefore play a major role in determining insect abundance. Plant diversity in the Fynbos is maintained by burning. These management burns, however, should not be applied too frequently or over areas large enough to extirpate any borer species. As these borers are excellent umbrellas for many other insects, their conservation covers Fynbos insect diversity in general.  相似文献   

17.
Avian rarity was investigated in ten high-altitude cloud forests in the Andes of Ecuador. Data on species compositions and abundances were obtained by a fully standardized method (standardization for area, altitude, habitat, effort and seasonality). The rare species were isolated from rank-abundance plots on the basis of the quartile definition of rarity. A positive correlation between mean abundances of species and number of sites occupied suggests that high-altitude bird species classified rare by abundance generally can also be classified rare by range. However, it is necessary to be cautious using this result in ranking conservation priorities since the generality is not obeyed by all species. Within the two abundance classes (contains one and two individuals, respectively) represented among the rare species, the one-individual class had significantly more species than the two-individual class. The quantitative rarity of taxa and ecological groupings produced similar results for all sites, while pairwise similarity of rare species between sites was very low. Together with the difficulty of identifying species that are truly rare by abundance, these results imply that sites selected for conservation preferably should be based upon a qualitative evaluation of lists of species referred to vulnerability categories such as endemic, restricted-range, CITES or IUCN threatened/near-threatened species. However, it is necessary also to incorporate other aspects of biodiversity to cover a full range of biotic diversity.  相似文献   

18.
Today wood and nonwood forest resources management meets and often clashes with environment and biological diversity protection. A main problem is to understand relationships between the different roles of forest biodiversity, site, and management parameters. A multivariate statistical analysis has been carried out in order to interpret relationships between some forest biodiversity components and forest inventory data. Several indices of floristic diversity, species abundance, and structural heterogeneity at stand level have been calculated. The different components of forest biodiversity were separated by principal components analysis. Relations between forest biodiversity indices and site and management attributes have been investigated by two multivariate statistical techniques: bivariate correlation analysis and multiple linear regression. Results showed a high correlation between all the investigated components of forest biodiversity and some topographic and/or forest management attributes. Results also gave ancillary information to define sustainable forest management criteria.  相似文献   

19.
Oxidation of methane in boreal forest soils: a comparison of seven measures   总被引:12,自引:4,他引:8  
Methane oxidation rates were measured in boreal forest soils using seven techniques that provide a range of information on soil CH4 oxidation. These include: (a) short-term static chamber experiments with a free-air (1.7 ppm CH4) headspace, (b) estimating CH4 oxidation rates from soil CH4 distributions and (c)222Rn-calibrated flux measurements, (d) day-long static chamber experiments with free-air and amended (+20 to 2000 PPM CH4) headspaces, (e) jar experiments on soil core sections using free-air and (f) amended (+500 ppm CH4) headspaces, and (g) jar experiments on core sections involving tracer additions of14CH4. Short-term unamended chamber measurements,222Rn-calibrated flux measurements, and soil CH4 distributions show independently that the soils are capable of oxidizing atmospheric CH4 at rates ranging to < 2 mg m–2 d–1. Jar experiments with free-air headspaces and soil CH4 profiles show that CH4 oxidation occurs to a soil depth of 60 cm and is maximum in the 10 to 20 cm zone. Jar experiments and chamber measurements with free-air headspaces show that CH4 oxidation occurs at low (< 0.9 ppm) thresholds. The14CH4-amended jar experiments show the distribution of end products of CH4 oxidation; 60% is transformed to CO2 and the remainder is incorporated in biomass. Chamber and jar experiments under amended atmospheres show that these soils have a high capacity for CH4 oxidation and indicate potential CH4 oxidation rates as high as 867 mg m–2 d–1. Methane oxidation in moist soils modulates CH4 emission and can serve as a negative feedback on atmospheric CH4 increases.  相似文献   

20.
为研究近自然森林经营下的樟子松人工林不同林分类型对昆虫群落多样性的影响,本文以塞罕坝自然保护区内的樟子松纯林与混交林作为研究对象,对5种林分类型(樟子松、樟子松-落叶松、樟子松-白桦、樟子松-山荆子、樟子松-落叶松-白桦-山荆子-山刺玫)中的昆虫多样性进行分析.共获得昆虫标本9617头,隶属于7目70科195种,以双翅目、半翅目和鞘翅目为优势类群.5种不同林分类型中的昆虫物种均比较丰富,且各林分类型之间的昆虫群落结构均处于中等不相似水平,樟子松混交林内的昆虫物种数和个体数均高于纯林,但昆虫群落特征指数在不同林分类型之间无显著差异.主成分分析显示,植食性类群、捕食性类群和寄生性类群是构成昆虫群落结构的主要成分,且捕食性和寄生性等天敌类群对植食性类群的制约作用较强,各林分内昆虫群落结构均具有较高的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号