首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thiazolidinedione anti-diabetic drugs increase activation of endothelial nitric-oxide (NO) synthase by phosphorylation at Ser-1177 and increase NO bioavailability, yet the molecular mechanisms that underlie this remain poorly characterized. Several protein kinases, including AMP-activated protein kinase, have been demonstrated to phosphorylate endothelial NO synthase at Ser-1177. In the current study we determined the role of AMP-activated protein kinase in rosiglitazone-stimulated NO synthesis. Stimulation of human aortic endothelial cells with rosiglitazone resulted in the time- and dose-dependent stimulation of AMP-activated protein kinase activity and NO production with concomitant phosphorylation of endothelial NO synthase at Ser-1177. Rosiglitazone stimulated an increase in the ADP/ATP ratio in endothelial cells, and LKB1 was essential for rosiglitazone-stimulated AMPK activity in HeLa cells. Infection of endothelial cells with a virus encoding a dominant negative AMP-activated protein kinase mutant abrogated rosiglitazone-stimulated Ser-1177 phosphorylation and NO production. Furthermore, the stimulation of AMP-activated protein kinase and NO synthesis by rosiglitazone was unaffected by the peroxisome proliferator-activated receptor-gamma inhibitor GW9662. These studies demonstrate that rosiglitazone is able to acutely stimulate NO synthesis in cultured endothelial cells by an AMP-activated protein kinase-dependent mechanism, likely to be mediated by LKB1.  相似文献   

2.
Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.  相似文献   

3.
Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.  相似文献   

4.
5.
Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration. The protein kinase Akt activates the endothelial NO synthase (eNOS) by phosphorylation of Ser-1177. Therefore, we investigated the contribution of Akt-mediated eNOS phosphorylation to VEGF-induced EC migration. Inhibition of NO synthase or overexpression of a dominant negative Akt abrogated VEGF-induced cell migration. In contrast, overexpression of constitutively active Akt was sufficient to induce cell migration. Moreover, transfection of an Akt site phospho-mimetic eNOS (S1177D) potently stimulated EC migration, whereas a non-phosphorylatable mutant (S1177A) inhibited VEGF-induced EC migration. Our data indicate that eNOS activation via phosphorylation of Ser-1177 by Akt is necessary and sufficient for VEGF-mediated EC migration.  相似文献   

6.
Endothelial nitric-oxide synthase (eNOS) is an important component of vascular homeostasis. During vascular disease, endothelial cells are exposed to excess reactive oxygen species that can alter cellular phenotype by inducing various signaling pathways. In the current study, we examined the implications of H(2)O(2)-induced signaling for eNOS phosphorylation status and activity in porcine aortic endothelial cells. We found that H(2)O(2) treatment enhanced eNOS activity and NO bioactivity as determined by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline and cellular cGMP content. Concomitant with eNOS activation, H(2)O(2) also activated Akt, increased eNOS phosphorylation at Ser-1177, and decreased eNOS phosphorylation at Thr-495. H(2)O(2)-induced promotion of eNOS activity and modulation of the eNOS phosphorylation status at Ser-1177 and Thr-495 were significantly attenuated by selective inhibitors of Src kinase, the ErbB receptor family, and phosphoinositide 3-kinase (PI 3-K). We found that Akt activation, eNOS Ser-1177 phosphorylation, and eNOS activation by H(2)O(2) were calcium-dependent, whereas eNOS dephosphorylation at Thr-495 was not, suggesting a branch point in the signaling cascade downstream from PI 3-K. Consistent with this, overexpression of a dominant negative isoform of Akt inhibited H(2)O(2)-induced phosphorylation of eNOS at Ser-1177 but not dephosphorylation of eNOS at Thr-495. Together, these data indicate that H(2)O(2) promotes calcium-dependent eNOS activity through a coordinated change in the phosphorylation status of the enzyme mediated by Src- and ErbB receptor-dependent PI 3-K activation. In turn, PI 3-K mediates eNOS Ser-1177 phosphorylation via a calcium- and Akt-dependent pathway, whereas eNOS Thr-495 dephosphorylation does not involve calcium or Akt. This response may represent an attempt by endothelial cells to maintain NO bioactivity under conditions of enhanced oxidative stress.  相似文献   

7.
Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.  相似文献   

8.
Activation of AMP-activated protein kinase (AMPK) has been recently demonstrated to be associated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-stimulated glucose transport mediated by both GLUT1 and GLUT4 transporters. However, signaling events upstream and downstream of AMPK are unknown. Here we report that 1) p38 mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase 3 (MKK3) were activated by AICAR in Clone 9 cells, which express only the GLUT1 transporters, and 2) activation of p38 was required for AICAR-stimulated glucose transport since treatment of the cells with p38 inhibitor SB203580 or overexpression of dominant negative p38 mutant inhibited glucose transport. Moreover, we found that overexpression of the constitutively active form of AMPK mutant also resulted in a significant activation of p38, and inhibition of p38 activity by SB203580 did not affect AICAR-stimulated activation of AMPK. These findings demonstrate that AICAR-stimulated activation of p38 is indeed mediated by AMPK, and the p38 MAPK cascade is downstream of AMPK in the signaling pathway of AICAR-stimulated glucose transport in Clone 9 cells.  相似文献   

9.
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. With oxidative stress, the critical cofactor BH(4) is depleted, and NADPH oxidation is uncoupled from NO generation, leading to production of (O(2)*). Although phosphorylation of eNOS regulates in vivo NO generation, the effects of phosphorylation on eNOS coupling and O(2)* generation are unknown. Therefore, we phosphorylated recombinant BH(4)-free eNOS in vitro using native kinases and determined O(2)* generation using EPR spin trapping. Phosphorylation of Ser-1177 by Akt led to an increase (>50%) in maximal O(2)* generation from eNOS. Moreover, Ser-1177 phosphorylation greatly altered the Ca(2+) sensitivity of eNOS, such that O(2)* generation became largely Ca(2+)-independent. In contrast, phosphorylation of eNOS at Thr-495 by protein kinase Calpha (PKCalpha) had no effect on maximum activity or calcium sensitivity but decreased calmodulin binding and increased association with caveolin. In endothelial cells, eNOS-dependent O(2)* generation was stimulated by vascular endothelial growth factor that induced phosphorylation of Ser-1177. With PKC activation that led to phosphorylation of Thr-495, no inhibition of O(2)* generation occurred. As such, phosphorylation of eNOS at Ser-1177 is pivotal in the direct regulation of O(2)* and NO generation, altering both the Ca(2+) sensitivity of the enzyme and rate of product formation, whereas phosphorylation of Thr-495 indirectly affects this process through regulation of the calmodulin and caveolin interaction. Thus, Akt-mediated phosphorylation modulates eNOS uncoupling and greatly increases O(2)* generation from the enzyme at low Ca(2+) concentrations, and PKCalpha-mediated phosphorylation alters the sensitivity of the enzyme to other negative regulatory signals.  相似文献   

10.
AMP-activated protein kinase phosphorylation of endothelial NO synthase   总被引:23,自引:0,他引:23  
The AMP-activated protein kinase (AMPK) in rat skeletal and cardiac muscle is activated by vigorous exercise and ischaemic stress. Under these conditions AMPK phosphorylates and inhibits acetyl-coenzyme A carboxylase causing increased oxidation of fatty acids. Here we show that AMPK co-immunoprecipitates with cardiac endothelial NO synthase (eNOS) and phosphorylates Ser-1177 in the presence of Ca2+-calmodulin (CaM) to activate eNOS both in vitro and during ischaemia in rat hearts. In the absence of Ca2+-calmodulin, AMPK also phosphorylates eNOS at Thr-495 in the CaM-binding sequence, resulting in inhibition of eNOS activity but Thr-495 phosphorylation is unchanged during ischaemia. Phosphorylation of eNOS by the AMPK in endothelial cells and myocytes provides a further regulatory link between metabolic stress and cardiovascular function.  相似文献   

11.
Black tea improves endothelial function in patients with coronary artery disease. We sought to determine the responsible components of black tea and elucidate the underlying cell signaling mechanisms. We exposed porcine aortic endothelial cells to components of black tea and found that the polyphenol fraction acutely enhanced nitric oxide bioactivity. This effect involved endothelial nitric-oxide synthase (eNOS) phosphorylation at Ser-1177 and dephosphorylation at Thr-495, consistent with increased eNOS activity. These effects were calcium-dependent, as removal of extracellular calcium prevented eNOS phosphorylation at Ser-1177, whereas inhibition of intracellular calcium mobilization with TMB-8 blunted Thr-495 dephosphorylation. Black tea polyphenol-induced eNOS activation appeared dependent upon the phosphatidylinositol 3-kinase-Akt pathway, as it was significantly inhibited by LY294002 and a dominant negative Akt, respectively. Pharmacological inhibition of p38 mitogen-activated protein kinase (p38 MAPK) with either SB202190 or SB203580 as well as overexpression of a dominant negative p38 MAPKalpha attenuated both eNOS activation and phosphorylation changes in response to black tea polyphenols. Inhibition of p38 MAPKalpha also blunted Akt activation in response to black tea polyphenols, suggesting that p38alpha MAPK is upstream of Akt in this pathway. Finally, a constitutively active mutant of MKK6bE, an upstream kinase for p38 MAPK, enhanced both the basal and stimulated activity of Akt, leading to increased eNOS activity. Taken together, these data identify the p38 MAPK as an upstream component of Akt-mediated eNOS activation.  相似文献   

12.
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator.  相似文献   

13.
AMP-activated protein kinase (AMPK) is a serine-threonine kinase that regulates cellular metabolism and has an essential role in activating glucose transport during hypoxia and ischemia. The mechanisms responsible for AMPK stimulation of glucose transport are uncertain, but may involve interaction with other signaling pathways or direct effects on GLUT vesicular trafficking. One potential downstream mediator of AMPK signaling is the nitric oxide pathway. The aim of this study was to examine the extent to which AMPK mediates glucose transport through activation of the nitric oxide (NO)-signaling pathway in isolated heart muscles. Incubation with 1 mM 5-amino-4-imidazole-1-beta-carboxamide ribofuranoside (AICAR) activated AMPK (P < 0.01) and stimulated glucose uptake (P < 0.05) and translocation of the cardiomyocyte glucose transporter GLUT4 to the cell surface (P < 0.05). AICAR treatment increased phosphorylation of endothelial NO synthase (eNOS) approximately 1.8-fold (P < 0.05). eNOS, but not neuronal NOS, coimmunoprecipitated with both the alpha(2) and alpha(1) AMPK catalytic subunits in heart muscle. NO donors also increased glucose uptake and GLUT4 translocation (P < 0.05). Inhibition of NOS with N(omega)-nitro-l-arginine and N(omega)-methyl-l-arginine reduced AICAR-stimulated glucose uptake by 21 +/- 3% (P < 0.05) and 25 +/- 4% (P < 0.05), respectively. Inhibition of guanylate cyclase with ODQ and LY-83583 reduced AICAR-stimulated glucose uptake by 31 +/- 4% (P < 0.05) and 22 +/- 3% (P < 0.05), respectively, as well as GLUT4 translocation to the cell surface (P < 0.05). Taken together, these results indicate that activation of the NO-guanylate cyclase pathway contributes to, but is not the sole mediator of, AMPK stimulation of glucose uptake and GLUT4 translocation in heart muscle.  相似文献   

14.
In this study, we explore the roles of the delta isoform of PKC (PKCdelta) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCdelta with either rottlerin or with the peptide, deltaV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCdelta inhibition using either rottlerin or the overexpression of a dominant negative PKCdelta mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCdelta inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCdelta is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCdelta-mediated Akt activation and NO generation in maintaining eNOS expression.  相似文献   

15.
High density lipoprotein (HDL) activates endothelial nitric-oxide synthase (eNOS), leading to increased production of the antiatherogenic molecule NO. A variety of stimuli regulate eNOS activity through signaling pathways involving Akt kinase and/or mitogen-activated protein (MAP) kinase. In the present study, we investigated the role of kinase cascades in HDL-induced eNOS stimulation in cultured endothelial cells and COS M6 cells transfected with eNOS and the HDL receptor, scavenger receptor B-I. HDL (10-50 microg/ml, 20 min) caused eNOS phosphorylation at Ser-1179, and dominant negative Akt inhibited both HDL-mediated phosphorylation and activation of the enzyme. Phosphoinositide 3-kinase (PI3 kinase) inhibition or dominant negative PI3 kinase also blocked the phosphorylation and activation of eNOS by HDL. Studies with genistein and PP2 showed that the nonreceptor tyrosine kinase, Src, is an upstream stimulator of the PI3 kinase-Akt pathway in this paradigm. In addition, HDL activated MAP kinase through PI3 kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibition fully attenuated eNOS stimulation by HDL without affecting Akt or eNOS Ser-1179 phosphorylation. Conversely, dominant negative Akt did not alter HDL-induced MAP kinase activation. These results indicate that HDL stimulates eNOS through common upstream, Src-mediated signaling, which leads to parallel activation of Akt and MAP kinases and their resultant independent modulation of the enzyme.  相似文献   

16.
17.
18.
Preconditioning (PC) with nitric oxide (NO) donors or agents that increase endothelial NO synthase (eNOS) activity 24 h before ischemia-reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and stationary leukocyte adhesion (LA). Since 5'-AMP-activated protein kinase (AMPK) phosphorylates eNOS at Ser1177, resulting in activation, we postulated that AMPK activation may trigger the development of a preconditioned anti-inflammatory phenotype similar to that induced by NO donors. Wild-type (WT) C57BL/6J and eNOS(-/-) mice were treated with the AMPK agonist 5-aminoimidazole-4-carboxamide 1-beta-d-furanoside (AICAR) 30 min (early AICAR PC) or 24 h (late AICAR PC) before I/R; LR and LA were quantified in single postcapillary venules in the jejunum using intravital microscopy. I/R induced comparable marked increases in LR and LA in WT and eNOS(-/-) mice relative to sham-operated (no ischemia) animals. Late AICAR PC prevented postischemic LR and LA, whereas early AICAR PC prevented LA in WT mice. Late AICAR PC was ineffective in preventing I/R-induced LR but not LA in the eNOS(-/-) mice, and the same pattern was seen in WT animals treated with the NOS inhibitor N(omega)-nitro-l-arginine. Early AICAR PC remained effective in preventing LA in eNOS(-/-) mice. Our results indicate that both early and late PC with an AMPK agonist produces an anti-inflammatory phenotype in postcapillary venules. Since the protection afforded by late AICAR PC on postischemic LR was prevented by NOS inhibition in WT mice and absent in eNOS-deficient mice, it appears that eNOS triggers this protective effect. In stark contrast, antecedent AMPK activation prevented I/R-induced LA by an eNOS-independent mechanism.  相似文献   

19.
Recent studies have indicated that insulin activates endothelial nitric-oxide synthase (eNOS) by protein kinase B (PKB)-mediated phosphorylation at Ser1177 in endothelial cells. Because hyperglycemia contributes to endothelial dysfunction and decreased NO availability in types 1 and 2 diabetes mellitus, we have studied the effects of high glucose (25 mM, 48 h) on insulin signaling pathways that regulate NO production in human aortic endothelial cells. High glucose inhibited insulin-stimulated NO synthesis but was without effect on NO synthesis stimulated by increasing intracellular Ca2+ concentration. This was accompanied by reduced expression of IRS-2 and attenuated insulin-stimulated recruitment of PI3K to IRS-1 and IRS-2, yet insulin-stimulated PKB activity and phosphorylation of eNOS at Ser1177 were unaffected. Inhibition of insulin-stimulated NO synthesis by high glucose was unaffected by an inhibitor of PKC. Furthermore, high glucose down-regulated the expression of CAP and Cbl, and insulin-stimulated Cbl phosphorylation, components of an insulin signaling cascade previously characterized in adipocytes. These data suggest that high glucose specifically inhibits insulin-stimulated NO synthesis and down-regulates some aspects of insulin signaling, including the CAP-Cbl signaling pathway, yet this is not a result of reduced PKB-mediated eNOS phosphorylation at Ser1177. Therefore, we propose that phosphorylation of eNOS at Ser1177 is not sufficient to stimulate NO production in cells cultured at 25 mM glucose.  相似文献   

20.
Endothelium-derived NO is an important mediator of vascular protection and adhesion molecule expression on the endothelial cell surface is critical for leukocyte recruitment to atherosclerotic lesions. We hypothesized that AMP-activated protein kinase (AMPK) activity is a down-stream mediator of the beneficial effects of PPARalpha activators on vascular endothelial cells. Treatment of human umbilical vein endothelial cells (HUVEC) with fenofibrate or WY14643 resulted in transient activation of AMPK, as monitored by phosphorylation of AMPK and its down-stream target, acetyl-CoA carboxylase. Fenofibrate caused phosphorylation of Akt and eNOS, leading to increased production of NO, and also caused inhibition of cytokine-induced NF-kappaB activation, leading to suppression of expression of adhesion molecule genes. Significant decreases in eNOS activity and NO production in response to fenofibrate were observed in cells treated with AMPK siRNA or with AraA, a pharmacological inhibitor of AMPK. The attenuation of fenofibrate-induced inhibition of NF-kappaB activation was observed in mouse endothelial (SVEC4) cells treated with AMPK siRNA or with AraA. We demonstrated that TNFalpha stimulates IkappaB-alpha phosphorylation through induction of IKK activity, and that fenofibrate inhibits IKK activity and TNFalpha-induced IkappaB-alpha phosphorylation. Our findings suggest that the beneficial effects of PPARalpha activators on endothelial cells such as inhibition of diabetic microangiopathy might be attributed to the induction of AMPK activation beyond its lipid-lowering actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号