首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
TAAF ensures since 2007 the management of 5 small tropical islands lying in the southwestern Indian Ocean: the Iles Eparses. These islands share an exceptional natural heritage including many marine and terrestrial endemic species. At a regional scale the Iles Eparses are some of the most pristine ecosystems, largely preserved from anthropogenic impacts due to their geographical isolation and a historically very limited human occupation. In this context, TAAF wished that Iles Eparses become unique natural laboratories for earth scientists and environmental process observation – like climate change impacts - but also sustainable biodiversity sanctuaries for which the scientific community should provide baseline ecological data to inform on appropriate conservation tools. An inter-agency research consortium emerged in 2009 to meet this commitment for the Iles Eparses. This program was intended to set a science framework in accordance with France' objectives for Research and Conservation. It enabled between 2009 and 2014 the implementation of 18 cross-disciplinary research projects ranging from geology to ecology and represented by the variety of the proposed articles in this special issue. Altogether research projects have dramatically increased knowledge on the Iles Eparses' ecosystems and have provided the first overview of their diversity, their functions and their dynamics and its determinants. In particular applied research efforts have supplied a significant amount of ecological evidence that is now available to develop optimal conservation strategy to ensure the Iles Eparses' long-term biodiversity value. These findings point out that the continuation of research activity in the Iles Eparses should be considered a priority.  相似文献   

2.
3.
The diversity of marine macrophytes of small islands in the South Western Indian Ocean region has been poorly documented and little or no information is available for the Iles Eparses (or Scattered Islands) in the Mozambique Channel. We present the first species checklist for the three largest islands of the Iles Eparses: Europa, Juan de Nova and Glorioso. Overall, with a total of 321 marine macrophyte species recorded (incl. 56% Rhodophyta, 27% Chlorophyta, 15% Phaeophyceae and 2% Magnoliophyta; Europa: 134 spp., Juan de Nova: 157 spp. and Glorioso: 170 spp.) these islands harbour 23.5% of the total species recorded for the Mozambique Channel region. We report 36 new records for the Mozambique Channel including 29 undescribed new and cryptic species. Our results highlight a decrease in species richness southward in the Channel. Because of their longitudinal arrangement between the northern and the southern ends of the Channel and their central position, Europa, Juan de Nova and Glorioso Islands represent data points of particular biogeographical interest and could be critical ‘stepping stones’ for connectivity in the highly dynamic Mozambique Channel region.  相似文献   

4.
On oceanic islands, nest site availability can be an important factor regulating seabird population dynamics. The potential for birds to secure a nest to reproduce can be an important component of their life histories. The dates at which different seabird species arrive at colonies to breed will have important consequences for their relative chances of success. Early arrival on the island allows birds to obtain nests more easily and have higher reproductive success. However, the presence of an introduced predator may reverse this situation. For instance, in the sub-Antarctic Kerguelen archipelago, early arriving birds suffer heavy predation from introduced cats. Cats progressively switch from seabirds to rabbits, since the local rabbit population starts to peak after early arriving seabird species have already returned to the colony. When late-arriving birds arrive, cat predation pressure on seabirds is thus weaker. In this paper, we investigate the assumption that the advantage of early nest mnopolization conferred to early arriving birds may be counterbalanced by the cost resulting from predation. We develop a mathematical model representing a simplified situation in which two insular seabird species differ only in their arrival date at the colony site and compete for nesting sites. We conclude that predation may ensure the coexistence of the two bird species or favor the late-arriving species, but only when seasonal variations in predation pressure are large. Interestingly, we conclude that arriving early is only favorable until a given level where high reproductive success no longer compensates for the long exposure to strong predation pressure. Our work suggests that predation can help to maintain the balance between species of different phenologies.  相似文献   

5.
Invasive species are the main threat to island biodiversity; seabirds are particularly vulnerable and are one of the most threatened groups of birds. Gough Island, a UNESCO World Heritage Site in the South Atlantic Ocean, is an Important Bird and Biodiversity Area, and one of the most important seabird colonies globally. Invasive House Mice Mus musculus depredate eggs and chicks of most seabird species on the island, but the extent of their impact has not been quantified. We used field data and bootstrapped normal distributions to estimate breeding success and the number of surviving chicks for 10 seabird species on Gough Island, and compared estimates with those of analogous species from predator‐free islands. We examined the effects of season and nest‐site location on the breeding success of populations on Gough Island, predicting that the breeding success of Gough birds would be lower than that of analogues, particularly among small burrow‐nesting species. We also predicted that winter‐breeding species would exhibit lower breeding success than summer‐breeding species, because mice have fewer alternative food sources in winter; and below‐ground nesters would have lower breeding success than surface nesters, as below‐ground species are smaller so their chicks are easier prey for mice. We did indeed find that seabirds on Gough Island had low breeding success compared with analogues, losing an estimated 1 739 000 (1 467 000–2 116 000) eggs/chicks annually. Seven of the 10 focal species on Gough Island had particularly high chick mortality and may have been subject to intense mouse predation. Below‐ground and winter breeders had lower breeding success than surface‐ and summer‐breeders. MacGillivray's Prion Pachyptila macgillivrayi, Atlantic Petrel Pterodroma incerta and Tristan Albatross Diomedea dabbenena are endemic or near‐endemic to Gough Island and are likely to be driven to extinction if invasive mice are not removed.  相似文献   

6.
During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney’s coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney’s seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.  相似文献   

7.
Robert W. Furness 《Ibis》2023,165(1):322-327
Special Protection Areas (SPAs) designated under the EU Birds Directive have improved the conservation status of many terrestrial bird species in Europe, but protecting breeding sites may be less effective for highly mobile birds such as seabirds. Colony census data for Great Skuas Stercorarius skua and Great Black-backed Gulls Larus marinus in Scotland show that breeding numbers have fared no better in sites where these species are SPA breeding features and, counter-intuitively, the evidence indicates better performance in non-SPA colonies, most likely because non-SPA colonies are generally smaller so are less subject to density-dependent competition. The main drivers of population change are widespread rather than colony-based in these two species with recent reductions in carrying capacity. Many other seabird species are vulnerable to similar widespread pressures so seabird conservation strategy needs to focus on mitigating these pressures, as designation of seabird breeding sites as SPAs is not enough to ensure effective seabird conservation.  相似文献   

8.
Summary The seabird and seal community at Heard Island and the McDonald Islands comprised an estimated total biomass of 27893 tonnes of which the 15 breeding species of seabirds made up 70%. The total annual consumption of marine resources was estimated to be approximately 521 000 t, of which 81% was consumed by seabirds Approximately 165 000 t of fish, 41 600 t of squid and 312 000 t of crustaceans are consumed annually by this seabird and seal community. The annual energy flux to this community was estimated to be 2.17·1012 kJ and approximately 56 000 t of carbon are consumed annually. Breeding populations of King Penguins and Antarctic Fur Seals are increasing, that of the Southern Elephant Seal is decreasing; there are no data on the population trend for Macaroni Penguins, the predominant consumer species. Commercial fisheries are presently operating at the nearby Iles Kerguelen, and similar activities may prove to be commercially viable at Heard Island. The fishery is for Champsocephalus gunnari, a major prey species of penguins and Antarctic Fur Seals at Heard Island during the summer breeding season.  相似文献   

9.
Previous studies have shown that the dispersal of plant seeds to oceanic islands is largely attributable to birds. However, few studies have assessed the role of adhesive dispersal by birds even though this mechanism has long been recognized as a major vector of seed transport. Some data point to the possibility that adhesive transport by seabirds transfers alien plant seeds in island ecosystems. In the present study, we examined the seed-dispersing ability of seabirds among islands in the oceanic Ogasawara Islands, Japan. We used capture surveys to examine the frequency of seeds adhering to seabirds and tested the salt tolerances of the seeds. The distributions of the plant species were examined and the relationships between plant and seabird distributions were analyzed using generalized linear models. Seeds of nine plant species, including aliens, were detected on 16–32?% of captured seabirds. Seeds included those generally considered to be dispersed by wind or internally transported by birds in their guts. Seeds exposed to NaCl solution isotonic with seawater for up to 8?h suffered little or no loss of viability. Analyses of plant distributions demonstrated positive relationships between the distributions of some plants and seabirds. These results show that seabirds effectively disperse seeds of both native and introduced plant species. This is the first study to comprehensively assess adhesive seed dispersal by seabirds; it provides essential information on long-distance dispersal.  相似文献   

10.
We undertook breeding surveys between 2010 and 2011 to assess the status of breeding birds on 16 islands in the northern Saudi Arabia. Sixteen bird species were found breeding at three different seasons; i.e. winter (Osprey), spring (Caspian and Saunder’s Terns), and summer (Lesser Crested, White-cheeked, Bridled Terns). It is postulated that food availability is an important factor influencing the breeding of seabirds in the northern Saudi Arabian Red Sea. Several species laid eggs earlier in northern parts of the Red Sea than in southern parts. The predicted increases in temperatures (Ta) could have a negative effect on species survival in the future, especially on those whose nests that are in the open. Finally, disturbance, predation and egg collection were probably the main immediate threats affecting the breeding seabird species in the northern Red Sea.  相似文献   

11.
Given that 29% of seabird species are threatened with extinction, protecting seabird colonies on offshore islands is a global conservation priority. Seabirds are vulnerable to non‐native predator invasions, which reduce or eliminate colonies. Accordingly, conservation efforts have focused on predator eradication. However, affected populations are often left to passively recover following eradications. Although seabirds are highly mobile, their life history traits such as philopatry can limit passive recolonization of newly predator‐free habitat. In such cases, seabird colonies can potentially be re‐instated with active restoration via chick translocations or social attraction methods, which can be risky and expensive. We used biogeographic and species‐specific behavioral data in the Hauraki Gulf, New Zealand, a global hotspot of seabird diversity and predator eradications, to illustrate the use of geographic information systems multi‐criteria decision analysis to prioritize islands for active seabird restoration. We identified nine islands with low observed passive recovery of seabirds posteradication over a 50‐year timeframe, and classified these as sites where active seabird management could be prioritized. Such spatially explicit tools are flexible, allowing for managers to choose case‐specific criteria such as time, funding, and goals constrained for their conservation needs. Furthermore, this flexibility can also be applied to threatened species management by customizing the decision criteria for individual species' capacity to passively recolonize islands. On islands with complex restoration challenges, decision tools that help island restoration practitioners decide whether active seabird management should be paired with eradication can optimize restoration outcomes and ecosystem recovery.  相似文献   

12.
Can predation by invasive mice drive seabird extinctions?   总被引:3,自引:0,他引:3  
The house mouse, Mus musculus, is one of the most widespread and well-studied invasive mammals on islands. It was thought to pose little risk to seabirds, but video evidence from Gough Island, South Atlantic Ocean shows house mice killing chicks of two IUCN-listed seabird species. Mouse-induced mortality in 2004 was a significant cause of extremely poor breeding success for Tristan albatrosses, Diomedea dabbenena (0.27 fledglings/pair), and Atlantic petrels, Pterodroma incerta (0.33). Population models show that these levels of predation are sufficient to cause population decreases. Unlike many other islands, mice are the only introduced mammals on Gough Island. However, restoration programmes to eradicate rats and other introduced mammals from islands are increasing the number of islands where mice are the sole alien mammals. If these mouse populations are released from the ecological effects of predators and competitors, they too may become predatory on seabird chicks.  相似文献   

13.
Seabirds are one of the most threatened groups of birds globally and, overall, their conservation status is deteriorating rapidly. Southern hemisphere countries are over-represented in the number of species of conservation concern yet long-term phenological data on seabirds in the southern hemisphere is limited. A better understanding of the implications of changes in the marine and terrestrial environments to seabird species is required in order to improve their management and conservation status. Here we conducted a meta-analysis of the phenological drivers and trends among southern hemisphere seabirds. Overall there was a general trend towards later phenological events over time (34 % of all data series, N?=?47; 67 % of all significant trends), though this varied by taxa and location. The strongest trends towards later events were for seabirds breeding in Australia, the Laridae (gulls, noddies, terns) and migratory southern polar seabirds. In contrast, earlier phenologies were more often observed for the Spheniscidae (penguins) and for other seabirds breeding in the Antarctic and subantarctic. Phenological changes were most often associated with changes in oceanographic conditions, with sea-ice playing an important role for more southerly species. For some species in some locations, such as the Little Penguin Eudyptula minor in south-eastern Australia, warmer oceans projected under various climate change scenarios are expected to correspond to increased seabird productivity, manifested through earlier breeding, heavier chicks, an increased chance of double brooding, at least in the short-term.  相似文献   

14.
The marine benthic cyanobacteria of the Iles Eparses, Mozambique Channel, were surveyed for the first time. A total of 39 species are reported: 29 from Europa, 17 from Glorioso and 23 from Juan de Nova Islands. The higher biodiversity in Europa is explained by greater habitat diversity on this Island with unique ecosystems (mangroves, fossil reefs, pools). Average species richness varied between the geomorphological habitat types with higher diversity in shallow environments (fossil reef pools, mangroves, reef flats), which are characterized by high temperatures and high irradiances. The most common species observed on the three islands were Hydrocoleum coccineum, Hydrocoleum glutinosum, Hydrocoleum lyngbyaceum, Phormidium laysanense, Lyngbya sordida, and Symploca hydnoides; which are also the dominant species observed in the Southwest Indian Ocean region. The most frequent species was Phormidium laysanense with extensive cover observed in the northwest of Juan de Nova Island. Our study provided a comparison between the cyanobacterial flora of Iles Eparses and the recorded surveys in the Southwest Indian Ocean region. The low similarity observed between these species lists could be explained by differences in sampling strategies and efforts, as well as by different taxonomic approaches employed in past regional studies.  相似文献   

15.
Invasive species are a global problem but most studies have focused on their direct rather than indirect ecological effects. We studied litter and soil‐inhabiting invertebrate communities on 18 islands off northern New Zealand, to better understand the indirect ecological consequences of rat (Rattus) invasion. Nine islands host high densities of burrowing procellariid seabirds that transport large amounts of nutrients from the ocean to the land. The other nine have been invaded over the past 50–150 years by rat species that have severely reduced the density of seabirds by preying on eggs and chicks. Invaded islands had lower densities of seabird burrows but deeper forest litter than did the uninvaded islands, indicative of rats reducing disturbance effects of seabirds. However, despite deeper litter on the invaded islands, eight of the 19 orders of invertebrates that we measured were significantly less abundant on invaded islands. Furthermore, three soil‐inhabiting micro‐invertebrate groups that we measured were significantly less abundant on invaded islands. These differences probably result from rats thwarting transfer of resources by seabirds from the ocean to the land. We also investigated community‐level properties of each of three test groups of invertebrates (minute land snails, spiders and soil nematodes) to illustrate this process. Spiders were equally abundant on both groups of islands, but showed lower species richness on the invaded islands. The other two groups showed no difference in species richness with island invasion status, but were more abundant on uninvaded islands. Reduced abundance of soil nematodes on invaded islands provides strong evidence of indirect consequences of seabird reduction by rats, because nematodes are unavailable to rats as prey. We predict that if rats are eradicated from islands, components of below‐ground invertebrate dependent on seabird‐mediated soil conditions may take considerable time to recover because they require subsequent seabird recolonisation.  相似文献   

16.
The timing of annual events such as reproduction is a critical component of how free‐living organisms respond to ongoing climate change. This may be especially true in the Arctic, which is disproportionally impacted by climate warming. Here, we show that Arctic seabirds responded to climate change by moving the start of their reproduction earlier, coincident with an advancing onset of spring and that their response is phylogenetically and spatially structured. The phylogenetic signal is likely driven by seabird foraging behavior. Surface‐feeding species advanced their reproduction in the last 35 years while diving species showed remarkably stable breeding timing. The earlier reproduction for Arctic surface‐feeding birds was significant in the Pacific only, where spring advancement was most pronounced. In both the Atlantic and Pacific, seabirds with a long breeding season showed a greater response to the advancement of spring than seabirds with a short breeding season. Our results emphasize that spatial variation, phylogeny, and life history are important considerations in seabird phenological response to climate change and highlight the key role played by the species’ foraging behavior.  相似文献   

17.
ABSTRACT Nocturnal burrow‐nesting seabirds breeding on isolated oceanic islands pose challenges to conventional monitoring techniques, resulting in their frequent exclusion from population studies. These seabirds have been devastated by nonnative predator introductions on islands worldwide. After predators are eradicated, recovery has been poorly quantified, but evidence suggests some nocturnal seabird populations have been slow to return. We evaluated the use of automated acoustic recorders and call‐recognition software to investigate nocturnal seabird recovery after removal of introduced Arctic foxes (Alopex lagopus) in the Aleutian Archipelago, Alaska. We compared relative seabird abundance among islands by examining levels of vocal activity. We deployed acoustic recorders on Nizki‐Alaid, Amatignak, and Little Sitkin islands that had foxes removed in 1975, 1991, and 2000, respectively, and on Buldir, a predator‐free seabird colony. Despite frequent gales, only 2.9% of 2230 recording hours from May to August of 2008 and 2009 were unusable due to wind noise. Recording quality and call recognition model success were highest when recording devices were placed at sites offering some wind shelter. We detected greater vocal activity of Fork‐tailed (Oceanodroma furcata) and Leach's (O. leucorhoa) storm‐petrels and Ancient Murrelets (Synthliboramphus antiquus) on islands with longer time periods since fox eradication. Also, by detecting chick calls in the automated recordings, we confirmed breeding by Ancient Murrelets on an island thought to be abandoned due to fox predation. Acoustic monitoring allowed us to examine the relative abundance of seabirds at remote sites. If a link between vocalizations and population dynamics can be made, acoustic monitoring could be a powerful census method.  相似文献   

18.
《Harmful algae》2003,2(1):1-17
From the late Pliocene to now, blooms of toxic algae are associated with mortalities of marine birds. Given the long historical presence of harmful algal blooms (HABs) worldwide and the numbers of seabirds that feed on filter-feeding fish and shellfish, it is surprising that relatively few incidents of seabird deaths as a result of toxic algae have been reported. The limited information available tends to come from major events, whereas the rare events are missed and hence not reported. Much is anecdotal and still more probably is not published. We suspect that factors working in concert may lead to deaths and wrecks that might not occur as a result of anyone factor working independently, e.g. starvation tends to render birds more vulnerable to stress.“Seabird wrecks”, very much larger than usual concentration of seabird corpses washed ashore over a short period of time, often provide evidence of deleterious conditions in offshore populations, e.g. weather, food, pollution, fishing activities, and parasites. It is noted in the literature that wrecks caused by natural toxins such as botulism and algal toxins are apparently less common; however, this perception may be due to a combination of factors including the bird species involved, size of populations, location, and chance of discovery. Wrecks involving near-shore species probably provide a more accurate estimate of total mortality for any given event than offshore species.A survey of available data on the impacts of toxic algae on seabirds revealed an array of responses ranging from reduced feeding activity, inability to lay eggs, and loss of motor coordination to death. Severe impacts on recruitment have been noted in some populations. There are few experimental studies; however, evidence has been provided for the ability of some species to ‘learn’ to avoid toxic food sources. We present a summary of available data on seabird/toxic algal interactions and suggestions of how impacts on seabirds during future blooms of harmful algae be recorded.  相似文献   

19.
Petrels, albatrosses and other procellariiform seabirds have an excellent sense of smell, and routinely navigate over the world's oceans by mechanisms that are not well understood. These birds travel thousands of kilometres to forage on ephemeral prey patches at variable locations, yet they can quickly and efficiently find their way back to their nests on remote islands to provision chicks, even with magnetic senses experimentally disrupted. Over the seemingly featureless ocean environment, local emissions of scents released by phytoplankton reflect bathymetric features such as shelf breaks and seamounts. These features suggest an odour landscape that may provide birds with orientation cues. We have previously shown that concentrated experimental deployments of one such compound, dimethyl sulphide (DMS), attracts procellariiforms at sea, suggesting that some species can use it as a foraging cue. Here we present the first physiological demonstration that an Antarctic seabird can detect DMS at biogenic levels. We further show that birds can use DMS as an orientation cue in a non-foraging context within a concentration range that they might naturally encounter over the ocean.  相似文献   

20.
Canada’s eastern Arctic (Nunavut and Arctic Quebec—Nunavik, N of 60°) supports large numbers of seabirds in summer. Seabird breeding habitat in this region includes steep, rocky coasts and low-lying coasts backed by lowland sedge-meadow tundra. The former areas support colonial cliff- and scree-nesting seabirds, such as murres and fulmars; the latter inland or coastal seabirds, such as terns, gulls and jaegers. The region supports some 4 million breeding seabirds, of which the most numerous are thick-billed murres (Uria lomvia; 75%), black guillemots (Cepphus grylle; 9%), northern fulmars (Fulmarus glacialis; 8%) and black-legged kittiwakes (Rissa tridactyla; 6%). The majority of Arctic seabirds breed in a small number of very large colonies (>10,000 birds), but there are also substantial numbers of non-colonial or small-colony breeding populations that are scattered more widely (e.g. terns, guillemots). Population trends among Canadian Arctic seabirds over the past few decades have been variable, with no strongly negative trends except for the rare ivory gull (Pagophila eburnea): this contrasts with nearby Greenland, where several species have shown steep declines. Although current seabird trends raise only small cause for concern, climate amelioration may enable increased development activities in the north, potentially posing threats to some seabirds on their breeding grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号