首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hawaiian archipelago is often cited as the premier setting to study biological diversification, yet the evolution and phylogeography of much of its biota remain poorly understood. We investigated crab spiders (Thomisidae, Mecaphesa ) that demonstrate contradictory tendencies: (i) dramatic ecological diversity within the Hawaiian Islands, and (ii) accompanying widespread distribution of many species across the archipelago. We used mitochondrial and nuclear genetic data sampled across six islands to generate phylogenetic hypotheses for Mecaphesa species and populations, and included penalized likelihood molecular clock analyses to estimate arrival times on the different islands. We found that 17 of 18 Hawaiian Mecaphesa species were monophyletic and most closely related to thomisids from the Marquesas and Society Islands. Our results indicate that the Hawaiian species evolved from either one or two colonization events to the archipelago. Estimated divergence dates suggested that thomisids may have colonized the Hawaiian Islands as early as ~10 million years ago, but biogeographic analyses implied that the initial diversification of this group was restricted to the younger island of Oahu, followed by back-colonizations to older islands. Within the Hawaiian radiation, our data revealed several well-supported genetically distinct terminal clades corresponding to species previously delimited by morphological taxonomy. Many of these species are codistributed across multiple Hawaiian Islands and some exhibit genetic structure consistent with stepwise colonization of islands following their formation. These results indicate that dispersal has been sufficiently limited to allow extensive ecological diversification, yet frequent enough that interisland migration is more common than speciation.  相似文献   

2.
Aim R. J. Whittaker et al. recently proposed a ‘general dynamic model of oceanic island biogeography’ (GDM), providing a general explanation of island biodiversity patterns by relating fundamental biogeographical processes – speciation, immigration, extinction – to area (A) and time (T; maximum island geological age). We adapt their model, which predicts a positive relationship with area combined with a humped relationship to time (designated the ATT2 model), to study the factors promoting diversification on the Azores for several arthropod groups. Location The Azorean archipelago (North Atlantic; 37–40° N, 25–31° W). Methods We use the number of single‐island endemics (SIEs) as a measure of diversification, to evaluate four different predictions for the variation in SIEs between different islands, derived from the GDM theory and our knowledge of the fauna and history of the Azores. We calculated the number of SIEs for seven out of the nine Azorean islands and six groups of species (all arthropods, beetles, cavernicolous and non‐cavernicolous species, and taxa with high and low dispersal abilities). Several variables accounting for island characteristics (area, geological age, habitat diversity and isolation) and generalized linear models were used to evaluate the reliability of each prediction. Results A linear and positive relationship between SIEs and an AT (area + time) model was the most parsimonious explanation for overall arthropod diversification. However, cavernicolous species showed the opposite pattern (more SIEs inhabiting the youngest islands). Also, isolation was an important predictor of diversification for all groups except for the species with high dispersal ability; while the former were negatively related to the distance from the main source of colonizing lineages (Santa Maria island in most cases), the latter were related to area. Dispersal ability was also a key factor affecting the diversification of most groups of species. Main conclusions In general, the diversification of Azorean arthropods is affected by age, area and isolation. However, different groups are affected by these factors in different ways, showing radically different patterns. Although the ATT2 model fails to predict the diversification pattern of several groups, it provides a framework for integrating these deviations into a general theory. Further improvements of the GDM theory need to take into account the particular traits of each group and the role of isolation in shaping island diversity.  相似文献   

3.
Island biodiversity has long fascinated biologists as it typically presents tractable systems for unpicking the eco‐evolutionary processes driving community assembly. In general, two recurring themes are of central theoretical interest. First, immigration, diversification, and extinction typically depend on island geographical properties (e.g., area, isolation, and age). Second, predictable ecological and evolutionary trajectories readily occur after colonization, such as the evolution of adaptive trait syndromes, trends toward specialization, adaptive radiation, and eventual ecological decline. Hypotheses such as the taxon cycle draw on several of these themes to posit particular constraints on colonization and subsequent eco‐evolutionary dynamics. However, it has been challenging to examine these integrated dynamics with traditional methods. Here, we combine phylogenomics, population genomics and phenomics, to unravel community assembly dynamics among Pheidole (Hymenoptera, Formicidae) ants in the isolated Fijian archipelago. We uphold basic island biogeographic predictions that isolated islands accumulate diversity primarily through in situ evolution rather than dispersal, and population genomic support for taxon cycle predictions that endemic species have decreased dispersal ability and demography relative to regionally widespread taxa. However, rather than trending toward island syndromes, ecomorphological diversification in Fiji was intense, filling much of the genus‐level global morphospace. Furthermore, while most endemic species exhibit demographic decline and reduced dispersal, we show that the archipelago is not an evolutionary dead‐end. Rather, several endemic species show signatures of population and range expansion, including a successful colonization to the Cook islands. These results shed light on the processes shaping island biotas and refine our understanding of island biogeographic theory.  相似文献   

4.

Background

A central aim of island biogeography is to understand the colonization history of insular species using current distributions, fossil records and genetic diversity. Here, we analyze five plastid DNA regions of the endangered Juniperus brevifolia, which is endemic to the Azores archipelago.

Methodology/Principal Findings

The phylogeny of the section Juniperus and the phylogeographic analyses of J. brevifolia based on the coalescence theory of allele (plastid) diversity suggest that: (1) a single introduction event likely occurred from Europe; (2) genetic diversification and inter-island dispersal postdated the emergence of the oldest island (Santa Maria, 8.12 Ma); (3) the genetic differentiation found in populations on the islands with higher age and smaller distance to the continent is significantly higher than that on the younger, more remote ones; (4) the high number of haplotypes observed (16), and the widespread distribution of the most frequent and ancestral ones across the archipelago, are indicating early diversification, demographic expansion, and recurrent dispersal. In contrast, restriction of six of the seven derived haplotypes to single islands is construed as reflecting significant isolation time prior to colonization.

Conclusions/Significance

Our phylogeographic reconstruction points to the sequence of island emergence as the key factor to explain the distribution of plastid DNA variation. The reproductive traits of this juniper species (anemophily, ornithochory, multi-seeded cones), together with its broad ecological range, appear to be largely responsible for recurrent inter-island colonization of ancestral haplotypes. In contrast, certain delay in colonization of new haplotypes may reflect intraspecific habitat competition on islands where this juniper was already present.  相似文献   

5.
The origin of the terrestrial biota of Madagascar and, especially, the smaller island chains of the western Indian Ocean is relatively poorly understood. Madagascar represents a mixture of Gondwanan vicariant lineages and more recent colonizers arriving via Cenozoic dispersal, mostly from Africa. Dispersal must explain the biota of the smaller islands such as the Comoros and the chain of Mascarene islands, but relatively few studies have pinpointed the source of colonizers, which may include mainland Africa, Asia, Australasia, and Madagascar. The pantropical hermit spiders (genus Nephilengys) seem to have colonized the Indian Ocean island arc stretching from Comoros through Madagascar and onto Mascarenes, and thus offer one opportunity to reveal biogeographical patterns in the Indian Ocean. We test alternative hypotheses on the colonization route of Nephilengys spiders in the Indian Ocean and simultaneously test the current taxonomical hypothesis using genetic and morphological data. We used mitochondrial (COI) and nuclear (ITS2) markers to examine Nephilengys phylogenetic structure with samples from Africa, southeast Asia, and the Indian Ocean islands of Madagascar, Mayotte, Réunion and Mauritius. We used Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, and calculated genetic distances and fixation indices. Our results suggest an African origin of Madagascar Nephilengys via Cenozoic dispersal, and subsequent colonization of the Mascarene islands from Madagascar. We find strong evidence of gene flow across Madagascar and through the neighboring islands north of it, while phylogenetic trees, haplotype networks, and fixation indices all reveal genetically isolated and divergent lineages on Mauritius and Réunion, consistent with female color morphs. These results, and the discovery of the first males from Réunion and Mauritius, in turn falsify the existing taxonomic hypothesis of a single widespread species, Nephilengys borbonica, throughout the archipelago. Instead, we diagnose three Nephilengys species: Nephilengys livida (Vinson, 1863) from Madagascar and Comoros, N. borbonica (Vinson, 1863) from Réunion, and Nephilengys dodo new species from Mauritius. Nephilengys followed a colonization route to Madagascar from Africa, and on through to the Mascarenes, where it speciated on isolated islands. The related golden orb-weaving spiders, genus Nephila, have followed the same colonization route, but Nephila shows shallower divergencies, implying recent colonization, or a moderate level of gene flow across the archipelago preventing speciation. Unlike their synanthropic congeners, N. borbonica and N. dodo are confined to pristine island forests and their discovery calls for evaluation of their conservation status.  相似文献   

6.
It is widely accepted that insular terrestrial biodiversity progresses with island age because colonization and diversification proceed over time. Here, we assessed whether this principle extends to oceanic island streams. We examined rangewide mtDNA sequence variation in four stream‐dwelling species across the Hawaiian archipelago to characterize the relationship between colonization and demographic expansion, and to determine whether either factor reflects island age. We found that colonization and demographic expansion are not related and that neither corresponds to island age. The snail Neritina granosa exhibited the oldest colonization time (~2.713 mya) and time since demographic expansion (~282 kya), likely reflecting a preference for lotic habitats most prevalent on young islands. Conversely, gobioid fishes (Awaous stamineus, Eleotris sandwicensis and Sicyopterus stimpsoni) colonized the archipelago only ~0.411–0.935 mya, suggesting ecological opportunities for colonization in this group were temporally constrained. These findings indicate that stream communities form across colonization windows, underscoring the importance of ecological opportunities in shaping island freshwater diversity.  相似文献   

7.
The extrinsic determinants hypothesis emphasizes the essential role of environmental heterogeneity in species’ colonization. Consequently, high resident species diversity can increase community susceptibility to colonizations because good habitats may support more species that are functionally similar to colonizers. On the other hand, colonization success is also likely to depend on species traits. We tested the relative importance of environmental characteristics and species traits in determining colonization success using census data of 587 vascular plant species collected about 70 yr apart from 471 islands in the archipelago of SW Finland. More specifically, we explored potential new colonization as a function of island properties (e.g. location, area, habitat diversity, number of resident species per unit area), species traits (e.g. plant height, life-form, dispersal vector, Ellenberg indicator values, association with human impact), and species’ historical distributions (number of inhabited islands, nearest occurrence). Island properties and species’ historical distributions were more effective than plant traits in explaining colonization outcomes. Contrary to the extrinsic determinants hypothesis, colonization success was neither associated with resident species diversity nor habitat diversity per se, although colonization was lowest on sparsely vegetated islands. Our findings lead us to propose that while plant traits related to dispersal and establishment may enhance colonization, predictions of plant colonizations primarily require understanding of habitat properties and species’ historical distributions.  相似文献   

8.
The levels of genetic diversity and gene flow may influence the long-term persistence of populations. Using microsatellite markers, we investigated genetic diversity and genetic differentiation in island (Krakatau archipelago, Indonesia) and mainland (Java and Sumatra, Indonesia) populations of Liporrhopalum tentacularis and Ceratosolen bisulcatus, the fig wasp pollinators of two dioecious Ficus (fig tree) species. Genetic diversity in Krakatau archipelago populations was similar to that found on the mainland. Population differentiation between mainland coastal sites and the Krakatau islands was weak in both wasp species, indicating that the intervening 40 km across open sea may not be a barrier for wasp gene flow (dispersal) and colonization of the islands. Surprisingly, mainland populations of the fig waSPS may be more genetically isolated than the islands, as gene flow between populations on the Javan mainland differed between the two wasp species. Contrasting growth forms and relative 'immunity' to the effects of deforestation in their host fig trees may account for these differences.  相似文献   

9.
The Ionian archipelago is the second largest Greek archipelago after the Aegean, but the factors driving plant species diversity in the Ionian islands are still barely known. We used stepwise multiple regressions to investigate the factors affecting plant species diversity in 17 Ionian islands. Generalized dissimilarity modelling was applied to examine variation in the magnitude and rate of species turnover along environmental gradients, as well as to assess the relative importance of geographical and climatic factors in explaining species turnover. The values of the residuals from the ISAR log10‐transfomed models of native and endemic taxa were used as a measure of island floristic diversity. Area was confirmed to be the most powerful single explanatory predictor of all diversity metrics. Mean annual precipitation and temperature, as well as shortest distance to the nearest island are also significant predictors of vascular plant diversity. The island of Kalamos constitutes an important plant diversity hotspot in the Ionian archipelago. The recent formation of the islands, the close proximity to the mainland source and the relatively low dispersal filtering of the Ionian archipelago has resulted in islands with a flora principally comprising common species and a low proportion of endemics. Small islands keep a key role in conservation of plant priority sites.  相似文献   

10.
Aim We compare the influence of contemporary geography and historical influences on butterfly diversity for islands in the Aegean archipelago. Location The Aegean archipelago (Greece) and two islands (Cyprus and Megisti) in the Levantine Sea. Methods Thirty‐one islands were examined. Data are taken from own surveys (Coutsis and Olivier) and from the literature. Stepwise multiple regression is used to determine relationships between species richness, frequency, rarity and endemicity against potential geographical predictors. Stepwise logit regression is used to determine geographical predictors of species incidence on islands. Inter‐island and inter‐species associations have been examined using multivariate ordination and clustering techniques. Results The Aegean butterfly fauna is characterized by decreasing diversity and rarity, and increasing homogeneity, from the periphery to the present geographical centre of the archipelago (Cyclades). Diversity and rarity are shown to relate closely to species richness, and species richness, in turn, is largely explained by contemporary geography, particularly the degree of isolation from the nearest mainland sources of Greece or Turkey, and island dimensions. Islands towards the centre of the archipelago are characterized by a group of mobile species (n ≥ 20 species) with extensive ranges across Europe; species that would have recolonized Santorini (Thira) following the VI6 eruption there c. 1630 bc . Endemic components, indicative of autochthonous evolutionary events, are few (5% of species are endemic) compared to known sedentary organisms (molluscs and isopods), but exceed those for more mobile animals (i.e. birds); their distribution is mainly confined to large isolated islands along the Aegean arc (i.e. Kriti) and in the Dodecanese group. Main conclusions Contemporary geography, i.e. processes currently operating in ecological time, dominates butterfly diversity gradients (species richness, frequency, rarity and incidence) in the archipelago. Two reasons are suggested to account for the lack of endemism and the pattern of decreasing diversity into the Cyclades. First, relict butterfly elements may have become extinct on all but a few larger islands, particularly from environmental changes since the Neolithic (fire and overgrazing). Second, colonization from the continental landmasses is ongoing with more mobile species transferring even to the most isolated islands.  相似文献   

11.
The islands of French Polynesia cover an area the size of Europe, though total land area is smaller than Rhode Island. Each hot spot archipelago (Societies, Marquesas, Australs) is chronologically arranged. With the advent of molecular techniques, relatively precise estimations of timing and source of colonization have become feasible. We compile data for the region, first examining colonization (some lineages dispersed from the west, others from the east). Within archipelagos, blackflies (Simulium) provide the best example of adaptive radiation in the Societies, though a similar radiation occurs in weevils (Rhyncogonus). Both lineages indicate that Tahiti hosts the highest diversity. The more remote Marquesas show clear examples of adaptive radiation in birds, arthropods and snails. The Austral Islands, though generally depauperate, host astonishing diversity on the single island of Rapa, while lineages on other islands are generally widespread but with large genetic distances between islands. More recent human colonization has changed the face of Polynesian biogeography. Molecular markers highlight the rapidity of Polynesian human (plus commensal) migrations and the importance of admixture from other populations during the period of prehistoric human voyages. However, recent increase in traffic has brought many new, invasive species to the region, with the future of the indigenous biota uncertain.  相似文献   

12.
Aim We examine the genetic diversity within the lizard genus Gekko in the Philippine islands to understand the role of geography and geological history in shaping species diversity in this group. We test multiple biogeographical hypotheses of species relationships, including the recently proposed Palawan Ark Hypothesis. Location Southeast Asia and the Philippines. Methods Samples of all island endemic and widespread Philippine Gekko species were collected and sequenced for one mitochondrial gene (NADH dehydrogenase subunit 2) and one nuclear gene (phosducin). We used maximum likelihood and Bayesian phylogenetic methods to derive the phylogeny. Divergence time analyses were used to estimate the time tree of Philippine Gekko in order to test biogeographical predictions of species relationships. The phylogenetic trees from the posterior distribution of the Bayesian analyses were used for testing biogeographical hypotheses. Haplotype networks were created for the widespread species Gekko mindorensis to explore genetic variation within recently divergent clades. Results Both maximum likelihood and Bayesian phylogenetic analyses indicated that Philippine Gekko species are a diverse clade with a long history in the archipelago. Ancestral range reconstruction and divergence time analyses suggest a Palawan microcontinental origin for this clade, coinciding with Palawan’s separation from Asia beginning 30 Ma, with subsequent diversification in the oceanic Philippine islands. The widespread species G. mindorensis and G. monarchus diversified in the late Miocene/early Pliocene and are potentially complexes of numerous undescribed species. Main conclusions The view of the Philippine islands as a ‘fringing archipelago’ does not explain the pattern of species diversity in the genus Gekko. Philippine Gekko species have diversified within the archipelago over millions of years of isolation, forming a large diverse group of endemic species. Furthermore, the Philippine radiation of gekkonid lizards demonstrates biogeographical patterns most consistent with stochastic colonization followed by in situ diversification. Our results reveal the need to consider deeper time geological processes and their potential role in the evolution of some Philippine terrestrial organisms.  相似文献   

13.
The species–area relationship (SAR) between different biological provinces is one of the most interesting, but least explored aspects of the well-known species–area pattern. Following the usage that a biological province is a region whose species have for the most part evolved within it, rather than immigrating from somewhere else, we propose that islands can be considered equivalent to biological provinces for single island endemic species (SIEs). Hence, analyses of the relationships between numbers of SIEs and island area can be used as model systems to explore the form of inter-provincial SARs. We analyzed 13 different data sets derived from 11 sources, using the power (log–log) model. Eleven of the SIE–area relationships were statistically significant, explaining high proportions of the variance in SIE numbers (R2 0.57–0.95). The z-values (slopes) of the statistically significant SIE–area relationships ranged from 0.47 to 1.13, with a mean value of 0.80 (SD±0.24).
All the island systems in which SIE represent >50% of species exhibited z-values for the SARs of native species higher than those deemed typical of archipelagic SARs. The SIE–area slopes are quite similar to those previously calculated for inter-provincial SARs, indicating that, when speciation becomes the dominant process adding to the species richness of assemblages, high z-values should be anticipated, regardless of the biogeographical scale of the study system.  相似文献   

14.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

15.
Aim To test the performance of the choros model in an archipelago using two measures of environmental heterogeneity. The choros model is a simple, easy‐to‐use mathematical relationship which approaches species richness as a combined function of area and environmental heterogeneity. Location The archipelago of Skyros in the central Aegean Sea (Greece). Methods We surveyed land snails on 12 islands of the archipelago. We informed the choros model with habitat data based on natural history information from the land snail species assemblage. We contrast this with habitat information taken from traditional vegetation classification to study the behaviour of choros with different measures of environmental heterogeneity. R2 values and Akaike's information criterion (AIC) were used to compare the choros model and the Arrhenius species–area model. Path analysis was used to evaluate the variance in species richness explained by area and habitat diversity. Results Forty‐two land snail species were recorded, living in 33 different habitat types. The choros model with habitat types had more explanatory power than the classic species–area model and the choros model using vegetation types. This was true for all islands of the archipelago, as well as for the small islands alone. Combined effects of area and habitat diversity primarily explain species richness in the archipelago, but there is a decline when only small islands are considered. The effects of area are very low both for all the islands of the archipelago, and for the small islands alone. The variance explained by habitat diversity is low for the island group as a whole, but significantly increases for the small islands. Main conclusions The choros model is effective in describing species‐richness patterns of land snails in the Skyros Archipelago, incorporating ecologically relevant information on habitat occupancy and area. The choros model is more effective in explaining richness patterns on small islands. When using traditional vegetation types, the choros model performs worse than the classic species–area relationship, indicating that use of proxies for habitat diversity may be problematic. The slopes for choros and Arrhenius models both assert that, for land snails, the Skyros Archipelago is a portion of a larger biogeographical province. The choros model, informed by ecologically relevant habitat measures, in conjunction with path analysis points to the importance of habitat diversity in island species richness.  相似文献   

16.
By their very nature oceanic island ecosystems offer great opportunities for the study of evolution and have for a long time been recognized as natural laboratories for studying evolution owing to their discrete geographical nature and diversity of species and habitats. The development of molecular genetic methods for phylogenetic reconstruction has been a significant advance for evolutionary biologists, providing a tool for answering questions about the diversity among the flora and fauna on such islands. These questions relate to both the origin and causes of species diversity both within an archipelago and on individual islands. Within a phylogenetic framework one can answer fundamental questions such as whether ecologically and/or morphologically similar species on different islands are the result of island colonization or convergent evolution. Testing hypotheses about ages of the individual species groups or entire community assemblages is also possible within a phylogenetic framework. Evolutionary biologists and ecologists are increasingly turning to molecular phylogenetics for studying oceanic island plant and animal communities and it is important to review what has been attempted and achieved so far, with some cautionary notes about interpreting phylogeographical pattern on oceanic islands.  相似文献   

17.
The genus R haphithamnus (Verbenaceae) consists of two species, one in South America and another endemic to the Juan Fernández archipelago, Chile. The genus represents an example of anagenetic speciation in which the island populations have diverged from their colonizing ancestors to the point where they are recognized as a distinct species. The island species R haphithamnus venustus differs from the continental R . spinosus primarily by floral traits associated with adaptation to hummingbird pollination. Two molecular markers, amplified fragment length polymorphisms (AFLPs) and microsatellites, were used to estimate divergence between the continental and insular species, and to compare diversity in the two species. The comparable or greater diversity in the insular species observed in some diversity indices of AFLPs would support the hypothesis that during the course of anagenetic speciation it has recovered from any reduction of genetic diversity associated with colonization of the archipelago. This pattern of comparable or higher diversity in insular species is seen with other instances of anagenetic speciation in the Juan Fernández archipelago. By contrast, the lower genetic diversity in the insular R . venustus found in microsatellites is likely to be the result of a founder effect from the original colonization of the archipelago; prior molecular studies suggest recent colonization of the Juan Fernández archipelago by R haphithamnus . The seeming non‐concordance between the present results and the widely accepted biogeography of R haphithamnus inferred from other data is discussed and an explanation is presented.  相似文献   

18.
The small-island effect (SIE) has become a widespread pattern in island biogeography and biodiversity research. However, in most previous studies only area is used for the detection of the SIE, while other causal factors such as habitat diversity is rarely considered. Therefore, the role of habitat diversity in generating SIEs is poorly known. Here, we compiled 86 global datasets that included the variables of habitat diversity, area and species richness to systematically investigate the prevalence and underlying factors determining the role of habitat diversity in generating SIEs. For each dataset, we used both path analysis and breakpoint regressions to identify the existence of an SIE. We collected a number of system characteristics and employed logistic regression models and an information–theoretic approach to determine which combination of variables was important in determining the role of habitat diversity in generating SIEs. Among the 61 datasets with adequate fits, habitat diversity was found to influence the detection of SIEs in 32 cases (52.5%) when using path analysis. By contrast, SIEs were detected in 26 of 61 cases (42.6%) using breakpoint regressions. Model selection and model-averaged parameter estimates showed that Number of sites, Habitat range and Species range were three key variables that determined the role of habitat diversity in generating SIEs. However, Area range, Taxon group and Site type received considerably less support. Our study demonstrates that the effect of habitat diversity on generating SIEs is quite prevalent. The inclusion of habitat diversity is important because it provides a causal factor for the detection of SIEs. We conclude that for a better understanding of the causes of SIEs, habitat diversity should be included in future studies.  相似文献   

19.
The Canary Islands have been a focus for phylogeographic studies on the colonization and diversification of endemic angiosperm taxa. Based on phylogeographic patterns, both inter island colonization and adaptive radiation seem to be the driving forces for speciation in most taxa. Here, we investigated the diversification of Micromeria on the Canary Islands and Madeira at the inter- and infraspecific level using inter simple sequence repeat PCR (ISSR), the trnK-Intron and the trnT-trnL-spacer of the cpDNA and a low copy nuclear gene. The genus Micromeria (Lamiaceae, Mentheae) includes 16 species and 13 subspecies in Macaronesia. Most taxa are restricted endemics, or grow in similar ecological conditions on two islands. An exception is M. varia, a widespread species inhabits the lowland scrub on each island of the archipelago and could represent an ancestral taxon from which radiation started on the different islands. Our analyses support a split between the "eastern" islands Fuerteventura, Lanzarote and Gran Canaria and the "western" islands Tenerife, La Palma and El Hierro. The colonization of Madeira started from the western Islands, probably from Tenerife as indicated by the sequence data. We identified two lineages of Micromeria on Gomera but all other islands appear to be colonized by a single lineage, supporting adaptive radiation as the major evolutionary force for the diversification of Micromeria. We also discuss the possible role of gene flow between lineages of different Micromeria species on one island after multiple colonizations.  相似文献   

20.
Speciation and phylogeography of Hawaiian terrestrial arthropods   总被引:8,自引:2,他引:6  
The Hawaiian archipelago is arguably the world's finest natural laboratory for the study of evolution and patterns of speciation. Arthropods comprise over 75% of the endemic biota of the Hawaiian Islands and a large proportion belongs to species radiations. We classify patterns of speciation within Hawaiian arthropod lineages into three categories: (i) single representatives of a lineage throughout the islands; (ii) species radiations with either (a) single endemic species on different volcanoes or islands, or (b) multiple species on each volcano or island; and (iii) single widespread species within a radiation of species that exhibits local endemism. A common pattern of phylogeography is that of repeated colonization of new island groups, such that lineages progress down the island chain, with the most ancestral groups (populations or species) on the oldest islands. While great dispersal ability and its subsequent loss are features of many of these taxa, there are a number of mechanisms that underlie diversification. These mechanisms may be genetic, including repeated founder events, hybridization, and sexual selection, or ecological, including shifts in habitat and/or host affiliation. The majority of studies reviewed suggest that natural selection is a primary force of change during the initial diversification of taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号