首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Wittman SE  Gotelli NJ 《Oecologia》2011,166(1):207-219
Although interference competition is a conspicuous component of many animal communities, it is still uncertain whether the competitive ability of a species determines its relative abundance and patterns of association with other species. We used replicated arena tests to quantify behavioral dominance of eight common species of co-occurring ground-foraging ants in the Siskiyou Mountains of southern Oregon. We found that behavior recorded in laboratory assays was an accurate representation of a colony's ability to monopolize resources in the field. We used interaction frequencies from the behavioral tests to estimate transition probabilities in a simple Markov chain model to predict patterns of relative abundance in a metacommunity that is dominated by behavioral interactions. We also tested whether behavioral interactions between each pair of species could be used to predict patterns of species co-occurrence. We found that the Markov model did not accurately predict patterns of observed relative abundance on either the local or the regional scale. However, we did detect a significant negative correlation at the local scale in which behaviorally dominant species occupied relatively few baits. Pairwise behavioral data also did not predict species co-occurrence in any site. Although interference competition is a conspicuous process in ant communities, our results suggest that it may not contribute much to patterns of relative abundance and species co-occurrence in the system studied here. However, the negative correlation between behavioral dominance and bait occupancy at the local scale suggests that competition-colonization trade-offs may be important in resource acquisition and persistence of behaviorally subordinate species.  相似文献   

2.
A central prediction of niche theory is that biotic communities are structured by niche differentiation arising from competition. To date, there have been numerous studies of niche differentiation in local ant communities, but little attention has been given to the macroecology of niche differentiation, including the extent to which particular biomes show distinctive patterns of niche structure across their global ranges. We investigated patterns of niche differentiation and competition in ant communities in tropical rainforests, using different baits reflecting the natural food spectrum. We examined the extent of temporal and dietary niche differentiation and spatial segregation of ant communities at five rainforest sites in the neotropics, paleotropics, and tropical Australia. Despite high niche overlap, we found significant dietary and temporal niche differentiation in every site. However, there was no spatial segregation among foraging ants at the community level, despite strong competition for preferred food resources. Although sucrose, melezitose, and dead insects attracted most ants, some species preferentially foraged on seeds, living insects, or bird feces. Moreover, most sites harbored more diurnal than nocturnal species. Overall niche differentiation was strongest in the least diverse site, possibly due to its lower number of rare species. Both temporal and dietary differentiation thus had strong effects on the ant assemblages, but their relative importance varied markedly among sites. Our analyses show that patterns of niche differentiation in ant communities are highly idiosyncratic even within a biome, such that a mechanistic understanding of the drivers of niche structure in ant communities remains elusive.  相似文献   

3.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

4.
Resource segregation by species is a cornerstone ecological concept that may result from several processes such as interspecific competition, and can help structuring communities, in particular parasitoid communities. Phorid parasitoid flies that use ants as hosts usually employ one host per individual parasitoid, and thus the pressure for segregating the host resource should be high. At a particular community, these parasitoids might segregate resources by temporal differences in activity patterns, using different host species or nests from those available. Even if parasitoid species coexist on the same nest, they can take advantage of worker polymorphism and task division, searching for ants performing different tasks at different microsites of the same nest. Here we evaluated the segregation of parasitoid species in these hypothesized axes using leaf-cutting ant phorid parasitoids as a model system. We analyzed temporal data collected at two localities with contrasting host species richness; and compared parasitoid co-occurrence at the different niche axis. For most of the hypothesized niche axes tested we found either no departures from random expectations or significantly more niche overlap than expected by chance, ruling out the existence of biologically relevant host resource segregation in this system. However, there was evidence of segregation for some species, since one parasitoid species was only found in winter and another species showed a negative correlation of its abundance over nests with other two species. Furthermore, we found that several species were flexible in host use; Atta phorids varied in average host sizes preferred, whereas Acromyrmex phorids that were generalists were able to use different host species or microsites for host location. From an applied perspective, these results are encouraging when selecting species for the control of leaf-cutting ants because parasitoids coexistence seems to be unaffected by their overlap in niche dimensions.  相似文献   

5.
The ant mosaic is a concept of the non-random spatial distribution of individual ant species in trees built upon the assumption of interspecific behavioural associations. However, colony identity and environmental variance may also play a role in species distribution. Here we assess the presence of ant mosaics in a primary forest ecosystem and whether they are structured by species' aggressive behaviours or by habitat filtering. We sampled arboreal ants from vertically stratified baits exposed in 225 canopy trees in a 9-ha plot of primary lowland forest in Papua New Guinea, the largest forest area surveyed to detect ant mosaics. We performed behavioural tests on conspecific ants from adjacent trees to determine the territories of individual colonies. We explored the environmental effects on the ant communities using information on the plot vegetation structure and topography. Furthermore, we created a novel statistical method to test for the community non-random spatial structure across the plot via spatial randomisation of individual colony territories. Finally, we linked spatial segregation among the four most common species to experimentally assessed rates of interspecies aggression. The ant communities comprised 57 species of highly variable abundance and vertical stratification. Ant community composition was spatially dependent, but it was not affected by tree species composition or canopy connectivity. Only local elevation had a significant but rather small effect. Individual colony territories ranged from one tree to 0.7 ha. Species were significantly over-dispersed, with their territory overlap significantly reduced. The level of aggression between pairs of the four most common species was positively correlated with their spatial segregation. Our study demonstrates the presence of ant mosaics in tropical pristine forest, which are maintained by interspecific aggression rather than habitat filtering, with vegetation structure having a rather small and indirect effect, probably linked to microclimate variability.  相似文献   

6.
Ectomycorrhizal fungal communities can be structured by abiotic and biotic factors. Here, we present evidence for community structuring by species interactions. We sampled ectomycorrhizas and forest floor seven times during a 13-month period. The presence of various ectomycorrhizal fungal species was determined for each sample, and species co-occurrence analyses were performed. For both ectomycorrhizas and forest floor samples there was significantly less co-occurrence among species within the community than expected by chance, mostly because of negative associations involving Cenococcum geophilum or Clavulina cinerea. For some species pairs, there was significantly more co-occurrence than expected by chance. Both nitrogen and tannin additions to the forest floor altered some interactions among species. The causes of these nonrandom distributions are currently unknown. Future investigations on competition, antibiosis, parasitism and facilitation among ectomycorrhizal fungal species appear to be warranted.  相似文献   

7.
Interaction networks within biotic communities can be dramatically altered by anthropogenic habitat modification. Ants, an important ecological group, often interact competitively to form mosaic‐like patterns in disturbed plantation habitats, in which dominant species form mutually exclusive territories. However, the existence of these ant mosaics in pristine forests is contentious. Here we assess the relative strengths of ant competitive interactions in oil palm plantation and primary rain forest in Sabah, Malaysia, using null models of species co‐occurrence. We use two metrics: the C‐score, which measures mean degree of overall co‐occurrence, and a novel metric, the Cvar‐score, which measures the variance in degree of co‐occurrence. We also investigate the role of nest sites by collecting ants from canopy and leaf litter microhabitats, and from epiphytic ferns, an important nest site for canopy ants. Furthermore, we assess whether non‐native species, which were widespread in oil palm plantation (61 occurrences vs five in rain forest) are important in driving the formation of ant mosaics. We found no evidence for ant mosaics in any primary forest microhabitat. In oil palm plantation, segregation between species was pronounced in epiphytes, weak in the rest of the canopy and absent in leaf litter communities. Intriguingly, exclusion of non‐native ant species from analyses increased the degree of negative species co‐occurrence in all three microhabitats, with species segregation in the oil palm canopy becoming statistically significant. Our results suggest that invasion of plantation habitats by non‐native species does not drive increased species segregation in ant communities. Rather, high degrees of species segregation might relate to changes in the importance of canopy nest sites, with colonies competing more strongly for these in plantations. In primary forests, weaker nest‐site limitation and the highly complex, more vertically stratified, non‐uniform canopy could lead to random co‐occurrence between ant species at the scales studied here.  相似文献   

8.
Discussion of the vertical stratification of organisms in tropical forests has traditionally focused on species distribution. Most studies have shown that, due to differences in abiotic conditions and resource distribution, species can be distributed along the vertical gradient according to their ecophysiological needs. However, the network structure between distinct vertical strata remains little-explored. To fill this gap in knowledge, we used baits to sample ants in the canopy and understorey trees of a Mexican tropical rain forest to record the ant–tree co-occurrences. We examined the ant–tree co-occurrences in the canopy and understorey using complementary network metrics (i.e., specialization, interaction diversity, modularity, and nestedness). In addition, we evaluated co-occurrence patterns between ant species on trees, using C-score analysis. In general, we found no differences in the network structure, although the interaction diversity was greater in the understorey than in the canopy networks. We also observed that co-occurrence networks of each vertical stratum featured four ant species in the central core of highly co-occurring species, with three species unique to each stratum. Moreover, we found a similar trend toward ant species segregation in the both strata. These findings reveal a similar pattern of ant–ant co-occurrences in both vertical strata, probably due to the presence of arboreal-nesting ants in the understorey. Overall, we showed that despite the marked differences in species composition and environmental conditions between understorey and canopy strata, ant–tree co-occurrences in these habitats could be governed by similar mechanisms, related to dominance and resource monopolization by ants.  相似文献   

9.
A major goal of community ecology is to identify the patterns of species associations and the processes that shape them. Arboreal ants are extremely diverse and abundant, making them an interesting and valuable group for tackling this issue. Numerous studies have used observational data of species co‐occurrence patterns to infer underlying assembly processes, but the complexity of these communities has resulted in few solid conclusions. This study takes advantage of an observational dataset that is unusually well‐structured with respect to habitat attributes (tree species, tree sizes, and vegetation structure), to disentangle different factors influencing community organization. In particular, this study assesses the potential role of interspecific competition and habitat selection on the distribution patterns of an arboreal ant community by incorporating habitat attributes into the co‐occurrence analyses. These findings are then contrasted against species traits, to explore functional explanations for the identified community patterns. We ran a suite of null models, first accounting only for the species incidence in the community and later incorporating habitat attributes in the null models. We performed analyses with all the species in the community and then with only the most common species using both a matrix‐level approach and a pairwise‐level approach. The co‐occurrence patterns did not differ from randomness in the matrix‐level approach accounting for all ant species in the community. However, a segregated pattern was detected for the most common ant species. Moreover, with the pairwise approach, we found a significant number of negative and positive pairs of species associations. Most of the segregated associations appear to be explained by competitive interactions between species, not habitat affiliations. This was supported by comparisons of species traits for significantly associated pairs. These results suggest that competition is the most important influence on the distribution patterns of arboreal ants within the focal community. Habitat attributes, in contrast, showed no significant influence on the matrix‐wide results and affected only a few associations. In addition, the segregated pairs shared more biological characteristic in common than the aggregated and random ones.  相似文献   

10.
Complex distribution patterns of species-rich insect communities in tropical rainforests have been intensively studied, and yet we know very little about processes that generate these patterns. We provide evidence for the key role of homopteran honeydew and plant nectar in structuring ant communities in an Australian tropical rainforest canopy and understorey. We also test the ant visitation of these resources against predictions derived from the 'ant-mosaic' hypothesis. Two ant species were highly dominant in terms of territorial behaviour and abundance: Oecophylla smaragdina and Anonychomyrma gilberti . Both dominant ant species monopolised large aggregations of honeydew-producing homopterans. Attended homopteran species were highly segregated between these two ant species. For the use of extrafloral and floral nectar (involving 43 ant species on 48 plant species), partitioning of ant species among plant species and between canopy and understorey was also significant, but less pronounced. In contrast to trophobioses, simultaneous co-occurrence of different nectar foraging ant species on the same plant individuals was frequent (23% of all surveys). While both dominant ant species were mutually exclusive on honeydew and nectar sources, co-occurrence with non-dominant ant species on nectaries was common. The proportion of visits with co-occurrences was low for dominant ants and high for many sub-ordinate species. These findings support the ant mosaic theory. The differential role of honeydew (as a specialised resource for dominant ants) and nectar (as an opportunistic resource for all ants including the co-occurring non-dominant species) provides a plausible structuring mechanism for the Australian canopy ant community studied.  相似文献   

11.
Plant communities are often structured by interactions among species, such as competition or facilitation. If competition is an important factor that controls the presence and absence of species within intact communities, then a competitive hierarchy, a ranked order from competitive dominant to competitive subordinate, should predict the composition of intact communities. We tested whether a competitive hierarchy derived from pairwise comparisons accurately predicts species abundances within a constructed polyculture community consisting of seven species common to old-field plant communities. We first conducted a pot experiment in field conditions wherein we grew the species in all possible combinations, then created a competitive hierarchy derived from both competitive effect and competitive response for each species. Concurrently, at the same site in native field soil, we constructed polycultures consisting of the same seven species and calculated an abundance hierarchy based on foliar cover, biomass, and an index of species performance. The competitive hierarchy was not concordant with the abundance hierarchy, indicating that simple pairwise comparisons may not account for other factors that influence the abundance of species within relatively complex communities.  相似文献   

12.
Arnan X  Gaucherel C  Andersen AN 《Oecologia》2011,166(3):783-794
The role of competitive exclusion is problematic in highly diverse ant communities where exceptional species richness occurs in the face of exceptionally high levels of behavioural dominance. A possible non-niche–based explanation is that the abundance of behaviourally dominant ants is highly patchy at fine spatial scales, and subordinate species act as insinuators by preferentially occupying these gaps—we refer to this as the interstitial hypothesis. To test this hypothesis, we examined fine-scale patterns of ant abundance and richness according to a three-tiered competition hierarchy (dominants, subdominants and subordinates) in an Australian tropical savanna using pitfall traps spaced at 2 m intervals. Despite the presence of gaps in the fine-scale abundance of individual species, the combined abundance of dominant ants (species of Iridomyrmex, Papyirus and Oecophylla) was relatively uniform. There was therefore little or no opportunity for subordinate species to preferentially occupy gaps in the foraging ranges of dominant species, and we found no relationship between the abundance of dominant ants and nondominant species richness at fine spatial scales. However, we found a negative relationship between subdominant and subordinate ants, a negative relationship between dominant and subdominant ants, and a positive relationship between dominant and subordinate ants. These results suggest that dominant species actually promote species richness by neutralizing the effects of subdominant species on subordinate species. Such indirect interactions have very close parallels with three-tiered trophic cascades in food webs, and we propose a “competition cascade” where the interactions are through a competition rather than trophic hierarchy.  相似文献   

13.
The ant faunas of three remote Polynesian islands were censused using hand collecting techniques Known ant species richnesses were increased by factors of 2 3 3 7, and 4 3 and total species richnesses were estimated with a first-order jackknife estimator The large increase in species numbers is apparently due to inadequate earlier censuses (which missed localized and cryptic species) rather than recent immigrations Tests of species associations revealed more positive than negative interactions among species on both a pairwise and community-wide basis There is no evidence that ant species on these islands exclude each other from islands or from communities within islands, with the exception of three very aggressive species A multiple regression analysis of known ant species richness against sampling effort and area for Polynesian islands which have been differentially censused for ants by various collectors revealed sampling effort was highly significant, while area was not significant in explaining variation in known ant species numbers On Pacific islands that have been surveyed relatively thoroughly for ants multiple regression analyses of known ant species richness on area and distance showed that area was always highly significant, but distance was only marginally significant (depending on the regression model used) Thus remote Polynesian islands appear neither to be as depauperate as previously thought in numbers of ant species present, nor possess an unusual potential for evolutionary increase in species numbers  相似文献   

14.
Extrafloral nectar of plants and honeydew of hemipterans is a food source extensively explored by ants. Although basically a sugary liquid food, nectar and honeydew are composed of different nutrients and offered in distinct ways; thus, ants must interact differently with plants and hemipterans. In this study we assessed the availability and dominance of nectar of extrafloral nectaries and honeydew of sap-sucking hemipterans (i.e., sugar-based resources) as mechanisms regulating interaction frequency and structuring ant-plant-hemipteran networks. We studied 12 plant species (240 shrubs, 20 per species) and 12 hemipteran species (240 aggregations, 20 per species) that interacted with 26 ant species in an area of Rupestrian Fields (Rocky Montane Savannah), Brazil. We observed that the 7 ant species that collected honeydew were a subset of the 25 ant species feeding on nectar, but the highly interacted species Camponotus crassus was the same for both subnetworks. The ant-plant subnetwork exhibited a nested pattern of interaction with a low degree of specialization, while the ant-hemipteran subnetwork exhibited lower nestedness but higher specialization. We found a positive relationship between the offer of EFNs and the number of interactions with ants, probably resulting from reduced competition in plants with high availability of EFNs. However, hemipteran species that were most abundant did not interact with more species of ants, probably because of the numerical dominance of the species tending all hemipteran aggregations, regardless of size. However, segregation between ant species was higher than expected by chance for both plants and hemipterans, confirming a deterministic factor (i.e., competition between ant species) regulating the frequency of interactions. In summary, the availability of ENFs seems to be an important mechanism regulating ant-plant interactions, while numerical dominance seems to be an important mechanism structuring ant-hemipteran interactions.  相似文献   

15.
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.  相似文献   

16.
Community structure and positive interactions in constraining environments   总被引:8,自引:0,他引:8  
Spatial patterns in plant communities are thought to be controlled by the interplay of species interactions and environmental constraints. To evaluate the role of plant–plant interactions in shaping these communities we quantified species co-occurrence and interaction in seven environmentally distinct communities. These included four different semiarid habitats in southeast Spain, one alpine system in the Sierra Nevada range (Spain), and two sites in Venezuela, a secondary savanna near Caracas (Altos de Pipe), and a sclerophyllous shrubland in the Gran Sabana plateau. We expected that facilitation would be stronger at sites with more spatial associations. The four semiarid sites in Spain and the shrubland in Gran Sabana showed a high degree of positive species associations. Of the other two communities, one showed both positive and negative associations while negative ones predominated in Altos de Pipe. The direct experimental measure of neighbors' effect showed that positive interactions among species prevailed in communities where positive species associations dominated. The appearance of benefactor species in patches increased species richness compared with the surrounding inter-shrub spaces. Our results provide a link between spatial patterns and species interactions, where aggregation points to positive interactions and segregation to competitive or interference effects. Facilitation appears as a relevant process shaping communities under environmental constraints.  相似文献   

17.
1. We studied temporal variation in the structure of flea communities on small mammalian hosts from eastern Slovakia using null models. We asked (a) whether flea co-occurrences in infracommunities (in the individual hosts) in different hosts as well as in the component communities (in the host species) demonstrate a non-random pattern; (b) whether this pattern is indicative of either positive or negative flea species interactions; (c) whether this pattern varies temporally; and (d) whether the expression of this pattern is related to population size of either fleas or hosts or both. 2. We constructed a presence/absence matrix of flea species for each temporal sample of a host species and calculated four metrics of co-occurrence, namely the C-score, the number of checkerboard species pairs, the number of species combinations and the variance ratio (V-ratio). Then we compared these metrics with the respective indices calculated for 5000 null matrices that were assembled randomly using two algorithms, namely fixed-fixed (FF) and fixed-equiprobable (FE). 3. Most co-occurrence metrics calculated for real data did not differ significantly from the metrics calculated for simulated matrices using the FF algorithm. However, the indices observed for 42 of 75 presence/absence matrices differed significantly from the null expectations for the FE models. Non-randomness was detected mainly by the C-score and V-ratio metrics. In all cases, the direction of non-randomness was the same, namely the aggregation, not competition, of flea species in host individuals and host species. 4. The inclusion or exclusion of the uninfested hosts in the FE models did not affect the results for individual host species. However, exclusion of the uninfested host species led to the acceptance of the null hypothesis for only six of 13 temporal samples of the component flea communities for which non-randomness was detected when the uninfested hosts were included in the analysis. 5. In most host species, the absolute values of the standardized size effect of both the C-score and V-ratio increased with an increase in host density and a concomitant decrease in flea abundance and prevalence. 6. Results of this study demonstrated that (a) flea assemblages on small mammalian hosts were structured at some times, whereas they appeared to be randomly assembled at other times; (b) whenever non-randomness of flea co-occurrences was detected, it suggested aggregation but never segregation of flea species in host individuals or populations; and (c) the expression of structure in flea assemblages depended on the level of density of both fleas and hosts.  相似文献   

18.
The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. Previous studies that examined the mechanisms by which Argentine ants attain ecological dominance showed that superior interference and exploitation competition are key to the successful displacement of native ant species. The objective of this research was to test the hypothesis that effective interference competition by Argentine ants may also be detrimental to the survival of Argentine ant colonies where Argentine ants and native ants compete at toxic baits used to slow the spread of Argentine ants. To study this hypothesis, we examined the competitive interactions between Argentine ants and native odorous house ants, Tapinoma sessile, in the presence and absence of toxic baits. Results showed that Argentine ants aggressively outcompete T. sessile from toxic baits through efficient interference competition and monopolize bait resources. This has severe negative consequences for the survival of Argentine ants as colonies succumb to the toxic effects of the bait. In turn, T. sessile avoid areas occupied by Argentine ants, give up baits, and consequently suffer minimal mortality. Our results provide experimental evidence that highly efficient interference competition may have negative consequences for Argentine ants in areas where toxic baits are used and may provide a basis for designing innovative management programs for Argentine ants. Such programs would have the double benefit of selectively eliminating the invasive species while simultaneously protecting native ants from the toxic effects of baits.  相似文献   

19.
In most studies about ant communities, species are grouped into competitive hierarchies where top dominants drive the majority of other species away from resources. Nevertheless, in some ecosystems high ground temperatures may disrupt this hierarchical organization. Other changes in community structure are caused by the arrival of invasive ant species, which rapidly disassemble local communities. We studied the effects of competition and temperature on ant community organization on Surprise Island (New Caledonia). Four different habitats were distinguished: a central plain, a sea shore Argusia shrubland, a dense Scaveola shrub, and an arboreal Pisonia strata. Eight ant species were identified from pitfall traps (seven introduced and only one native species, Pheidole oceanica). Ant assemblages in each habitat had a different ecologically dominant species, and a dominant species in one habitat could be non-dominant and less abundant in another. From interactions at baits, we built a competitive hierarchy where the top dominant species was the native Ph. oceanica. Daily foraging activity rhythms of the different species mostly overlapped. The relationship between bait occupation and ground temperature followed a negative linear pattern at all sites and for most species, except for the relatively thermophilous Monomorium floricola. Indices of co-occurrence in pitfall traps indicated that species co-occurred randomly with respect to one another. Conversely, species appeared to be segregated when we examined co-occurrence at baits at the sites where Ph. oceanica was abundant. Oceanic islands are very susceptible to alien species, but on Surprise Island it seems that the sole native species dominates in some habitats when confronted by invasive species.  相似文献   

20.
Resource availability can influence the foraging strategy adopted by different ant species as they endeavor to meet nutrient demands of the colony. In tropical rain forests, environmental conditions including resource availability vary over a vertical gradient. Consequently, nitrogen is predicted to become more limiting than carbohydrates toward the canopy as food webs shift to become more reliant on plant-based resources. We used a “bait-choice” experiment in a tropical rain forest to examine differences in protein and carbohydrate use with height and determined whether there were differences in response between common (numerically dominant) and rare species. Additionally, we investigated the nutrient use at the species level. Using species co-occurrence analysis, we examined interspecific competition by testing the co-occurrence of ant species at the tree level. Over the 12 trees investigated, 124 morphospecies were identified with eight species comprising 90% of total ant abundance. Species richness and protein use increased with height of bait for all species pooled and for common species but not rare species. Correspondingly, relative carbohydrate use decreased with height. We found greater species richness of rare species on carbohydrate baits compared with protein baits. Ant species were randomly distributed among trees when all species were included in co-occurrence analysis. However, when only common species were considered, segregation between species was evident among trees providing evidence for the presence of ant mosaics. Our results suggest that nitrogen limitation in the canopy may not be true for the whole ant assemblage but rather for the few common species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号