首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few Southern Hemisphere tree-ring chronologies exceed 1000 years in length. We present a ca. 1700 years of indexed values for the long-lived conifer Athrotaxis selaginoides at Cradle Mt in southeastern Australia and compare it with the only other published millennial-plus length tree-ring chronology for Australia: the nearby Mt Read Lagarostrobos franklinii. We use simple correlation function and pointer year analyses to compare the climate responses of the two species (temperature, precipitation and growing degree days). Both chronologies show accelerated growth at their modern ends, but this growth acceleration is not synchronous, beginning approximately a quarter of a century earlier at the Cradle Mt site. This discrepancy may highlight the relevance of chronology composition and/or physiological differences in the species. Although the seasonality of the climatic responses of the two species is similar, that of A. selaginoides is generally weaker than that of L. franklinii. Somewhat paradoxically, the only pointer years in common between the chronologies are 1898 and 1908 CE. The periods from 600 to 900 CE and ∼1200–1450 CE are conspicuous for their absence of positive pointer years while no negative pointer years occur for either site from ∼1200–1350 CE. It is possible that differing patterns of pointer years can be partially explained by a peak in establishment from ∼1150–1850 CE at the Mt Read L. franklinii site compared to continuous establishment at Cradle Mt. Although statistically significant and time-stable climate responses for the A. selaginoides chronology are too weak to base a single-chronology climate reconstruction on, the long chronology will likely make an important contribution to future multi-proxy temperature reconstructions for southeastern Australia.  相似文献   

2.
《Dendrochronologia》2014,32(3):191-204
Blue intensity (BI) has the potential to provide information on past summer temperatures of a similar quality to maximum latewood density (MXD), but at a substantially reduced cost. This paper provides a methodological guide to the generation of BI data using a new and affordable BI measurement system; CooRecorder. Focussing on four sites in the Scottish Highlands from a wider network of 42 sites developed for the Scottish Pine Project, BI and MXD data from Scots pine (Pinus sylvestris L.) were used to facilitate a direct comparison between these parameters. A series of experiments aimed at identifying and addressing the limitations of BI suggest that while some potential limitations exist, these can be minimised by adhering to appropriate BI generation protocols. The comparison of BI data produced using different resin-extraction methods (acetone vs. ethanol) and measurement systems (CooRecorder vs. WinDendro) indicates that comparable results can be achieved. Using samples from the same trees, a comparison of both BI and MXD with instrumental climate data revealed that overall, BI performs as well as, if not better than, MXD in reconstructing past summer temperatures (BI r2 = 0.38–0.46; MXD r2 = 0.34–0.35). Although reconstructions developed using BI and MXD data appeared equally robust, BI chronologies were more sensitive to the choice of detrending method due to differences in the relative trends of non-detrended raw BI and MXD data. This observation suggests that the heartwood–sapwood colour difference is not entirely removed using either acetone or ethanol chemical treatment, which may ultimately pose a potential limitation for extracting centennial and longer timescale information when using BI data from tree species that exhibit a distinct heartwood–sapwood colour difference. Additional research is required in order to develop new methods to overcome this potential limitation. However, the ease with which BI data can be produced should help justify and recognise the role of this parameter as a potential alternative to MXD, particularly when MXD generation may be impractical or unfeasible for financial or other reasons.  相似文献   

3.
Rhododendron przewalskii is an important dwarf shrub species in alpine environments of western Sichuan that offers a unique opportunity to expand current dendrochronological networks into extreme environments beyond the survival limit of trees. Our objectives in this study are to evaluate the dendroclimatological potentials of R. przewalskii and determine the major limiting climate factor for the species’ growth rings. We sampled 25 cross-sections of R. przewalskii at an elevation of 4050 m, about 150 m above treeline, on Zhegu Mountain of Miyaluo in western Sichuan of southeastern Tibetan Plateau. R. przewalskii has well-defined growth rings such that most stem sections could be cross-dated. The resulting 61-year long standard chronology (A.D. 1949–2009) was derived from 38 series from 19 cross-sections. Response analysis revealed that radial growth of the Zhegu Mountain R. przewalskii is significantly and negatively correlated to late winter temperature (January–February), mainly driven by maximum temperatures. This correlation indicates that colder daytime temperatures during late-winter lead to improved growth the following growing season. Minimum winter temperatures do not appear important for radial growth of this population. R. przewalskii ring widths are also strongly correlated to late-winter maximum temperatures over the southeastern Tibetan Plateau region. April maximum and July minimum temperatures are positively and significantly correlated to radial growth suggesting that warm April days and warm July nights promote current-season radial growth. In contrast, radial growth is only negatively correlated to April precipitation, indicating that wet soil conditions inhibit total radial increment. The main differences of R. przewalskii compared to tree species living at high-altitude nearby regions is that R. przewalskii has a weaker positive growth response to summer temperature and winter minimum temperature, but a much stronger negative response to winter temperature. Due to the strong climatic signal recorded in the growth curves of R. przewalskii, this dwarf shrub should be useful for climate–growth studies in alpine regions where no forests are present.  相似文献   

4.
The study of forests dominated by red pine (Pinus resinosa Ait.), one of the few fire-resistant tree species of eastern North America, provides an opportunity to reconstruct long-term fire histories and examine the temporal dynamics of climate forcing upon forest fire regimes. We used a 300-year long spatially explicit dendrochronological reconstruction of the fire regime for Seney National Wildlife Refuge (SNWR, 38,531 ha), eastern Upper Michigan to: (1) identify fire size thresholds with strong vs. weak climate controls, (2) evaluate effect of landform type (outwash channel vs. sand ridges) in modifying climate–fire associations, and (3) check for the presence of temporal changes in the climate control of large fire events over the time period 1700–1983. We used a summer drought sensitive red pine chronology (ITRDB code can037) as a proxy of past fire-related climate variability. Results indicated that fires >60 ha in sand-ridge-dominated portions of SNWR and >100 ha in outwash channels were likely climatically driven events. Climate–fire associations varied over time with significant climate–fire linkages observed for the periods 1700–1800 (pre-EuroAmerican), 1800–1900 (EuroAmerican settlement) and 1900–1983 (modern era). Although an increase in fire activity at the turn of 20th century is commonly associated with human sources of ignitions, our results suggest that such an increase was also likely a climatically driven episode.  相似文献   

5.
Although long-lived trees grow in the Northern Caucasus, no single tree-ring chronology has been reported thus far from this area in the International Tree-Ring Data Base (ITRDB), neither has one been published in international journals. Extensive tree-ring studies were conducted over the last decade, and a tree-ring network was developed for the investigated area. The data on the minimum blue intensity based on 33 series of pine (Pinus sylvestris L.) and fir (Abies nordmanniana (Steven) Spach) is presented in this study. The minimum blue intensity (BI) chronology covers the period 1596–2011 with EPS value ≥0.85. The BI chronology strongly correlates with the mean June-September temperature (R = 0.74; p < 0.05) from the weather station “Kluhorskij Pereval” (1951–2011). Mean June-September temperature anomalies were reconstructed using the rescaling method. Based on the reconstruction provided in this study the twentieth century is characterized by highly increased June-September temperature. According to this study, the minimum blue intensity approach demonstrates a great potential for paleoclimatic research in the Caucasus. Vast spatial coverage of the new BI-based reconstruction based on data from only two locations in the Northern Caucasus provides prospects for reconstruction of temperature variations for a great region in the Middle East and Northern Africa.  相似文献   

6.
Temperate wetlands in the Northern Hemisphere have high long-term carbon sequestration rates, and play critical roles in mitigating regional and global atmospheric CO2 increases at the century timescale. We measured soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) from 11 typical freshwater wetlands (Heilongjiang Province) and one saline wetland (Jilin Province) in Northeast China, and estimated carbon sequestration rates using 210Pb and 137Cs dating technology. Effects of climate, net primary productivity, and nutrient availability on carbon sequestration rates (Rcarbon) were also evaluated. Chronological results showed that surface soil within the 0–40 cm depth formed during the past 70–205 years. Soil accretion rates ranged from 2.20 to 5.83 mm yr−1, with an average of 3.84 ± 1.25 mm yr−1 (mean ± SD). Rcarbon ranged from 61.60 to 318.5 gC m−2 yr−1 and was significantly different among wetland types. Average Rcarbon was 202.7 gC m−2 yr−1 in the freshwater wetlands and 61.6 gC m−2 yr−1 in the saline marsh. About 1.04 × 108 tons of carbon was estimated to be captured by temperate wetland soils annually in Heilongjiang Province (in the scope of 45.381–51.085°N, 125.132–132.324°E). Correlation analysis showed little impact of net primary productivity (NPP) and soil nutrient contents on Rcarbon, whereas climate, specifically the combined dynamics of temperature and precipitation, was the predominant factor affecting Rcarbon. The negative relationship observed between Rcarbon and annual mean temperature (T) indicates that warming in Northeast China could reduce Rcarbon. Significant positive relationships were observed between annual precipitation (P), the hydrothermal coefficient (defined as P/AT, where AT was accumulative temperature ≥10 °C), and Rcarbon, indicating that a cold, humid climate would enhance Rcarbon. Current climate change in Northeast China, characterized by warming and drought, may form positive feedbacks with Rcarbon in temperate wetlands and accelerate carbon loss from wetland soils.  相似文献   

7.
《Palaeoworld》2014,23(1):90-104
The temporal and spatial distributions of the radiolarian species Spongodiscus biconcavus Haeckel are investigated to understand the paleoceanographic evolution of the Bering Sea region during the last 4.3 Myr based on extensive study of samples collected at Site U1340 during the IODP Expedition 323. The biostratigraphic resolution for the region is also improved by multidisciplinary studies of radiolarians, diatoms, dinoflagellates, ebridians, and silicoflagellates. The results demonstrate that the abundance variation of S. biconcavus during the last 4.3 Myr is closely related to global climate changes, and the species can be used as a warm water and climate proxy in the Bering Sea. Based on the downhole profiles of S. biconcavus and other parameters, we conclude that the southern Bering Sea was associated with a warm water mass prior to 3.147 Ma but it gradually cooled thereafter. From 2.793 Ma to 0.889 Ma, a cold water mass and sea-ice predominated in the Bering Sea, in response to the early Northern Hemisphere glaciation (NHG). Furthermore, the climate suddenly became much cooler post 0.889 Ma. Nevertheless, a reversal of this cooling trend occurred after the Mid-Pleistocene Climatic Transition (∼1.2 Ma), marked by reoccurrence of warm water and reduced sea-ice in the Bering Sea until the final retreat of warm water mass from the Bering Sea after 0.239 Ma. These processes are correlated with biogeographic expansion and retreat of warm water planktonic species.  相似文献   

8.
Mongolia's Larix sibirica forests at the southern fringe of the Eurosiberian boreal forest belt are exposed not only to very low winter temperatures, but also to frequent summer droughts. It is not completely known how Siberian larch adapts to these stressors. We examined whether (i) these forests differ in their fine root bio- and necromass from more humid boreal forests further in the North and (ii) inter-annual fluctuations in fine root biomass are related to tree vitality. In two exceptionally dry summers, we found only 4–5 g DM m?2 of fine root biomass (in 0–20 cm depth), which is far less than typical conifer fine root biomass figures from boreal forests (c. 200–400 g m?2) and the lowest forest fine root biomass reported worldwide; in a moist summer, fine root biomass was 20 fold higher. In contrast to fine root biomass, both necromass and non-tree root mass were high in all three years. From the large increase of fine root biomass in the moist summer and the generally high root necromass, we conclude that drought-induced fine root dieback was the likely cause of the very small amount of live root mass in the dry summers. Larch fine roots seem to be more drought-sensitive than shoots, since marked needle loss did not occur under the extreme conditions.  相似文献   

9.
Tree rings from temperate zones of the world have provided abundant palaeo- ecological and paleo-hydroclimatic information. However, tree rings from subtropical to tropical regions remain relatively scarce, which greatly limit our fully understanding about the climate change issues. In the present work, tree-ring-width (TRW) measurements of Masson pine from Fujian province, the coastal area of subtropical southeast China were successfully crossdated and a TRW STD chronology was developed from 1854 to 2012. Significantly positive correlation was identified between the tree rings and April–November total precipitation (r = 0.71, p < 0.01). The reconstructed April–November precipitation exhibited two comparatively wet (1876–1886 and 1957–1962) and one comparatively dry (1986–2004) periods. An evident drying trend since 1959 was seen and it was mitigated after 1993. Most of the extreme low-precipitation years in the reconstruction were supported by the historical records. As revealed by the spatial correlation patterns, our precipitation reconstruction was also consistent with other hydroclimatic records along the coastal areas of southeast China, proving its ability to capture the large-scale hydrological signal in southeast China (mainly refers to the south of the middle-lower reaches of Yangtze River). The reconstructed precipitation showed significant correlation with the East Asian summer Monsoon (EASM) index. Moreover, it also indicated simultaneous variation with the monsoon precipitation in North China on a decadal scale, implying that growing season precipitation variations in both regions were influenced by the EASM strength. This work highlights the potential of using tree-ring width to reconstruct precipitation in subtropical southeast China, while the relevant issues about precipitation variation in this region is far from resolved.  相似文献   

10.
《Dendrochronologia》2014,32(2):137-143
We sampled Rocky Mountain junipers (RMJ) to produce a multi-century tree-ring chronology from a relict lava flow, the Paxton Springs Malpais (PAX), in the Zuni Mountains of western New Mexico. Our objective was to assess crossdating potential for RMJ growing on the volcanic badlands of the region, investigate potential relationships between climate and RMJ growth, and investigate temporal variability in relationships identified between climate and RMJ growing at our site. We hypothesized that, similar to other drought stressed-conifers growing on the lava flows, RMJ responds to climate factors that influence and indicate moisture availability. We found a high average mean sensitivity value (0.53), which indicated the PAX chronology exhibited enough annual variability to capture fluctuations in environmental conditions. The average interseries correlation (0.74) indicated confident crossdating and a significant association of annual growth among trees within the stand. The positive correlation between the PAX chronology and total precipitation for the local water year was significant (r = 0.53; P < 0.001). Significant positive correlations also were identified between monthly PDSI, monthly total precipitation, and RMJ radial growth. Analyses of temporal stability indicated that the positive relationship between RMJ growth at the PAX site and monthly PDSI was the most stable relationship during the period of analysis (1895–2007). More importantly, we identified a unique inverse relationship between radial growth and monthly mean temperature during periods of the preceding year and current growing year, the first such finding of a strong temperature response for a low-mid elevation tree species in the American Southwest. Our results confirm that RMJ samples collected on the Paxton Springs Malpais are sensitive to climate factors that affect moisture availability, further suggesting that RMJ may be suitable for use in dendroclimatic research at additional locations across the broad distribution of the species.  相似文献   

11.
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2 °C, 5 °C or 8 °C water) and weekly, 1-h heat shocks (+3 °C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148 d at 2 °C, 92 d at 5 °C, 50 d at 8 °C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3 °C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8 °C and 5 °C embryos were significantly smaller and had larger yolks than 2 °C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change.  相似文献   

12.
《Dendrochronologia》2014,32(2):144-152
Tree-ring research in Ireland has typically been dominated by Quercus species, particularly Quercus petraea and Quercus robur. Recent years have seen a greater focus on multi-species reconstructions in Ireland but, due to difficulties with the hardness of the wood, missing/pinched rings and fused stems, Taxus baccata has not been included in these investigations. Despite these difficulties, a 31-tree, 204-year T. baccata chronology was successfully constructed from Killarney National Park, southwest Ireland. The chronology exhibits promising dendroclimatological potential, with climatic responsiveness equivalent to that of the other major Irish tree taxa, including Quercus. The chronology shows the strongest relationship with May–June precipitation from Muckross House synoptic station (1970–2007; r = 0.521, p < 0.01) and Valentia Observatory (1941–2007; r = 0.545, p < 0.01). November–April temperatures also exhibited a strong relationship with the chronology post-1970 (r = 0.605, p < 0.01 for Muckross House, r = 0.567, p < 0.01 for Valentia Observatory), but this relationship is not time stable and breaks down for the pre-1970 Valentia Observatory record. The long-lived nature of T. baccata, the exceptional preservation of wood and rings in this hard softwood species, as well as its prominence in Irish archaeology, all point to the potential to expand this chronology both spatially and temporally, and demonstrate T. baccata's potential in multi-site and multi-species tree-ring studies in the region.  相似文献   

13.
Calibration-in-space (i.e. modern taxonomic assemblages of biota from many lakes located along a wide temperature gradient calibrated against meteorological data) is generally used to derive species-specific optima and tolerances. This results in transfer functions which then are applied to subfossil assemblages to quantitatively reconstruct environmental variables such as air/water temperature. Developing such transfer functions is time- and money-consuming, thus many biota-inferred temperature records are either based on transfer functions from other regions which might not take into account local characteristics or are only used qualitatively. In varved Lake Silvaplana (Engadine, Switzerland), another way of obtaining quantitative climate reconstructions from taxonomical assemblages preserved in lake sediments was assessed for the past 1000 years. A calibration-in-time (i.e. taxonomic-assemblage-of-biota time series calibrated against meteorological data covering the same time period) was developed for chironomids (non-biting midges) using a weighted-average-partial-least-square (WAPLS) model and compared with a calibration-in-space model. The calibration-in-time had a weaker correlation coefficient (r2 = 0.71) than the calibration-in-space (r2 = 0.86), but the error of prediction (RMSEP = 0.58 °C) and the maximum bias (Max Bias = 0.73 °C) outperformed the statistics of the calibration-in-space (RMSEP = 1.5 °C; Max Bias = 1.72). This result is probably due to the smaller temperature gradient of the calibration-in-time (6.5 °C) than the calibration-in-space (11.5 °C). For the last 150 years, the Pearson correlation coefficient was significant between the two reconstructions (rPearson = 0.52; p < 0.01) suggesting that both models recorded a similar pattern of temperature changes. On the millennium time-scale, both models showed a warm “Medieval Climate Anomaly”, a cold “Little Ice Age” and a warming through the present with significant correlations (rPearson corrected for autocorrelation (corr) = 0.61, p < 0.01) until ca. 1780 AD and between ca. 1937 and 2000 AD (rPearson corr = 0.90, p < 0.01). The reconstructions using both models significantly diverged between ca. 1780 and 1937 AD (rPearson corr = ?0.47, p < 0.01). The results of both reconstruction methods were compared with four independent local and regional records of early instrumental and documentary data during the period of divergence. Both reconstructions showed similarities with the early instrumental/documentary records, thus it was inconclusive which of the reconstruction models provides the better estimates. However, these results suggest that a calibration-in-time can be used to reconstruct climate over the last 1000 years when no calibration-in-space is available.  相似文献   

14.
Constructed treatment wetlands (CTWs) have been used effectively to treat a range of wastewaters and non-point sources contaminated with nitrogen (N). But documented long-term case studies of CTWs treating dilute nitrate-dominated agricultural runoff are limited. This study presents an analysis of four years of water quality data for a 1.6-ha surface-flow CTW treating irrigation return flows in Yakima Basin in central Washington. The CTW consisted of a sedimentation basin followed by two surface-flow wetlands in parallel, each with three cells. Inflow typically contained 1–3 mg-N/L nitrate and <0.4 mg-N/L total Kjeldahl N (TKN). Hydraulic loading was fairly constant, ranging from around 125 cm/d in the sedimentation basin to 12 cm/d in the treatment wetlands. Concentration removal efficiencies for nitrate averaged 34% in the sedimentation basin and 90–93% in the treatment wetlands. Total N removal efficiencies averaged 21% and 57–63% in the sedimentation basin and treatment wetlands, respectively. Area-based first-order removal rate constants for nitrate in the wetlands averaged 142–149 m/yr. Areal removal rates for nitrate in treatment wetlands averaged 139–146 mg-N/m2/d. Outflow from the CTW typically contained <0.1 mg-N/L nitrate and <0.6 mg-N/L TKN. Rates of nitrate loss in wetlands were highly seasonal, generally peaking in the summer months (June–August). Nitrate loss rates also correlated significantly with water temperature (positively) and dissolved oxygen (negatively). Based on the modified Arrhenius relationship, θ for nitrate loss in the wetlands was 1.05–1.09. The CTW also significantly affected temperature and dissolved oxygen concentration in waters flowing through the system. On average, the sedimentation basin caused an increase in temperature (+1.7 °C) and dissolved oxygen (+1.5 mg/L); in contrast the wetlands caused a decrease in temperature (?1.6 °C) and dissolved oxygen (?5.0 mg/L). Results show that CTWs with surface-flow wetlands can be extremely effective at polishing dilute non-point sources, particularly in semi-arid environments where warm temperatures and low oxygen levels in treatment wetland water promote biological denitrification.  相似文献   

15.
This paper analyses the purification efficiency and mass removal of organic material, suspended solids, nitrogen and phosphorus in a hybrid constructed wetland (CW) system treating wastewater from a basic school in Paistu, Estonia. The CW consists of two subsurface flow filter beds using lightweight aggregates (LWA): a two-chamber vertical subsurface flow (VSSF) filter bed followed by a horizontal subsurface flow (HSSF) filter bed, with a total area of 432 m2. This CW was constructed in summer 2002 by the Centre for Ecological Engineering in Tartu (CEET). Eighteen series of water samples (from 30.10.2003 to 15.10.2005) were undertaken. The analyses show the outstanding purification effect of the system: for BOD7 the average purification efficiency is 91%; for total suspended solids (TSS)—78%, for total P—89%, for total N—63%, and for NH4N—77%. The average outlet values for the above-listed parameters were 5.5, 7.0, 0.4, 19.2 and 9.1 mg L−1, respectively. According to our results, the purification parameters meet the standards set by the Water Act of Estonia for wastewater treatment plants of 2000–9999 PE: 15, 25, and 1.5 mg L−1 for BOD7, TSS and total P, respectively. The results show that hybrid CW systems consisting of subsurface flow filter beds can work efficiently in conditions of changing hydraulic loading and relatively cold climate. We did not find significant differences between the removal efficiency, mass removal, and values of the first-order rate-constant k for most water quality indicators during the warm (May–October) and cold (November–April) periods. Locally produced LWA as a filter material in CWs has shown good hydraulic conductivity and phosphorus sorption capacity (k = 17.1 ± 12.4 m yr−1). The Paistu CW, with its proper design and outstanding purification results, can be considered one of the best systems in Estonia.  相似文献   

16.
Current understanding of the paleoclimatic variability across the Tibetan Plateau (TP) is still limited because of the lack of long-term climatic records. We developed a regional tree–ring width chronology of Picea likiangensis var. balfouriana from the central Hengduan Mountains region, in the southeastern TP. Climate-growth correlation analysis revealed that the current year’s July (cJuly) and the current year’s August (cAugust) mean minimum temperature was the main climatic factor controlling tree-ring growth. Using a linear regression function, we reconstructed this indicator for the past 214 years (1795–2008) to produce the first mean minimum temperature reconstruction for the central Hengduan Mountains. The reconstruction satisfied all statistical calibration and validation tests, and represented 35.9% of the temperature variance recorded over the 1958–2008 instrumental period (34.6% after adjusting for the loss of the degrees of freedom). During the past 214 years, two major cold periods were identified from 1839 to 1853 and 1857–1942, and four major warm periods from 1802 to 1813, 1819–1838, 1972–1981, and 1988–2008. The degree of warming from 1988 to 2008 was unprecedented over the past two centuries. Spatial field correlation with the gridded temperature dataset revealed that our reconstruction captures large-scale regional temperature variations for the southeastern TP and its vicinity. The reconstructed variations were consistent when compared to other regional temperature datasets, historical documents, and records of glacier fluctuations in the surrounding high mountains. This consistency with multiple records suggests that our reconstructed sequence is reliable and it could represent historical large-scale temperature changes on the southeastern TP.  相似文献   

17.
Inappropriate farm practices can increase greenhouse gases (GHGs) emissions and reduce soil organic carbon (SOC) sequestration, thereby increasing carbon footprints (CFs), jeopardizing ecosystem services, and affecting climate change. Therefore, the objectives of this study were to assess the effects of different tillage systems on CFs, GHGs emissions, and ecosystem service (ES) values of climate regulation and to identify climate-resilient tillage practices for a winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) cropping system in the North China Plain (NCP). The experiment was established in 2008 involving no-till with residue retention (NT), rotary tillage with residue incorporation (RT), sub-soiling with residue incorporation (ST), and plow tillage with residue incorporation (PT). The results showed that GHGs emissions from agricultural inputs were 6432.3–6527.3 kg CO2-eq ha−1 yr−1 during the entire growing season, respectively. The GHGs emission from chemical fertilizers and irrigation accounted for >80% of that from agricultural inputs during the entire growing season. The GHGs emission from agricultural inputs were >2.3 times larger in winter wheat than that in the summer maize season. The CFs at yield-scale during the entire growing season were 0.431, 0.425, 0.427, and 0.427 without and 0.286, 0.364, 0.360, and 0.334 kg CO2-eq kg−1 yr−1 with SOC sequestration under NT, RT, ST, and PT, respectively. Regardless of SOC sequestration, the CFs of winter wheat was larger than that of summer maize. Agricultural inputs and SOC change contributed mainly to the component of CFs of winter wheat and summer maize. The ES value of climate regulation under NT was ¥159.2, 515.6, and 478.1 ha−1 yr−1 higher than that under RT, ST, and PT during the entire growing season. Therefore, NT could be a preferred “Climate-resilient” technology for lowering CFs and enhancing ecosystem services of climate regulation for the winter wheat–summer maize system in the NCP.  相似文献   

18.
Dinophysis acuta is a frequent seasonal lipophilic toxin producer in European Atlantic coastal waters associated with thermal stratification. In the Galician Rías, populations of D. acuta with their epicentre located off Aveiro (northern Portugal), typically co-occur with and follow those of Dinophysis acuminata during the upwelling transition (early autumn) as a result of longshore transport. During hotter than average summers, D. acuta blooms also occur in August in the Rías, when they replace D. acuminata. Here we examined a 30-year (1985–2014) time series of D. acuta from samples collected by the same method in the Galician Rías. Our main objective was to identify patterns of distribution and their relation with climate variability, and to explain the exceptional summer blooms of D. acuta in 1989–1990. A dome-shaped relationship was found between summer upwelling intensity and D. acuta blooms; cell maxima were associated with conditions where the balance between upwelling intensity and heating, leading to deepened thermoclines, combined with tidal phase (3 days after neap tides) created windows of opportunity for this species. The application of a generalized additive model based on biological (D. acuta inoculum) and environmental predictors (Cumulative June–August upwelling CUIJJA, average June–August SSTJJA and tidal range) explained more than 70% of the deviance for the exceptional summer blooms of D. acuta, through a combination of moderate (35,000–50,000 m3 s−1 km−1) summer upwelling (CUIJJA), thermal stratification (SSTJJA > 17 °C) and moderate tidal range (∼2.5 m), provided D. acuta cells (inoculum) were present in July. There was no evidence of increasing trends in D. acuta bloom frequency/intensity nor a clear relationship with NAO or other long-term climatic cycles. Instead, the exceptional summer blooms of 1989–1990 appeared linked to extreme hydroclimatic anomalies (high positive anomalies in SST and NAO index), which affected most of the European Atlantic coast.  相似文献   

19.
The aim of this study was to compare the climatic responses of three tree rings proxies: tree ring width (TRW), maximum latewood density (MXD), and blue intensity (BI). For this study, 20 cores of Pinus sylvestris covering the period 1886–2015 were extracted from living non-damaged trees from the Eastern Carpathian Mountains (Romania). Each chronology was compared to monthly and daily climate data. All tree ring proxies had a stronger correlation with the daily climate data compared to monthly data. The highest correlation coefficient was obtained between the MXD chronology and daily maximum temperature over the period beginning with the end of July and ending in the middle of September (r = 0.64). The optimal intervals for the temperature signature were 01 Aug – 24 Sept for the MXD chronology, 05 Aug – 25 Aug for the BI chronology, and both 16 Nov of the previous year – 16 March of the current year and 15 Apr – 05 May for the TRW chronology. The results from our study indicate that MXD can be used as a proxy indicator for summer maximum temperature, while TRW can be used as a proxy indicator for just March maximum temperature. The weak and unstable relationship between BI and maximum temperature indicates that BI is not a good proxy indicator for climate reconstructions over the analysed region.  相似文献   

20.
Many mammals have specialized nose-tips with glabrous and often wet skin, called rhinaria. The function of the rhinarium is unknown in most species. Rhinaria differ not only in shape and skin structure, but also in skin temperature. They are considerably colder in carnivorans than in herbivorous artio- and perissodactyls. Domestic dogs are carnivorans and their noses often feel cold, such that they can be used as an abundant and easily accessible model species. We performed a study on rhinarium temperature in dogs under various ambient temperatures as well as in different behavioral and physiological contexts, breeds, and age groups. The rhinaria of adult, alert, and comfortable dogs are colder than ambient temperature from 30 °C (approximately 5 °C colder) down to a break point at about 15 °C. At an ambient temperature of 0 °C, rhinarium temperature is approximately 8 °C and the decrease in skin surface temperature with decreasing ambient temperature has not yet leveled off. The dog rhinarium warms up under a number of circumstances. In contrast to the continuously warm rhinaria of herbivores, our results suggest strongly that the cold state is the operating state of the dog rhinarium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号