首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.  相似文献   

2.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

3.
Although some consensus exists regarding the positive synergism between energy and heterogeneity in increasing species diversity, the role of environmental variability remains controversial. We examine how these factors interact to explain spatial variation in mammal species richness in South America. After taking into account the effects of spatial autocorrelation and area, elevation variability and energy mainly drive spatial variation in mammal species richness. The effect of environmental variability is less important. When different taxonomic groups of mammals are analyzed separately, three ways emerge whereby energy and heterogeneity interact to promote species richness. Heterogeneity may have no effect on species richness, habitat heterogeneity and energy availability contribute independently to species richness, or heterogeneity increases in importance with an increase in energy availability. The partition of species into range size quartiles shows that habitat heterogeneity and temporal instability in the resource supply account for the species richness pattern in the narrowest- ranging species. Habitat heterogeneity is significant also for intermediate ranging species but not for the widest-ranging species. Energy alone drives the species richness pattern in the latter species. The interplay between ecology and biogeographic history may ultimately explain these differences given that narrow- and wide-ranging species show distinct biogeographic patterns, and different taxonomic groups also unequally represent them.  相似文献   

4.
The management of multi-functional landscapes warrants better knowledge of environment-richness associations at varying disturbance levels and habitat gradients. Intensive land-use patterns for agricultural purposes lead to fragmentation of natural habitat resulting in biodiversity loss that can be measured using landscape metrics to assess mammalian richness. Since carnivores and herbivores are likely to show different responses to disturbance, we calculated carnivore, non-carnivore, and total mammal species richness from camera surveys using a first order Jackknife Estimator. Richness was compared along a habitat gradient comprising coastal forest, Acacia thicket, and highland in KwaZulu-Natal, South Africa. We used standardized OLS regression models to identify climatic and disturbance variables, and landscape metrics as predictors of species richness. The estimated total and non-carnivore species richness were highest in coastal forest, while carnivore species richness was highest in highland followed by coastal forest and Acacia thicket. Average monthly maximum temperature was a significant predictor of all richness groups, and precipitation of the wettest month and isothermality determined total and non-carnivore species richness, respectively. These climatic variables possibly limit species distribution because of physiological tolerance of the species. Total mammal richness was determined by mean shape (+) and habitat division (−) while diversity (+) and patch richness (−) explained carnivore species richness. Mean shape index (+) influenced non-carnivore richness. However, habitat division and patch richness negatively influenced total mammal richness. Though habitat patch size and contiguity had a weak positive prediction, these metrics demonstrated the importance of habitat connectivity for maintaining mammal richness. The identification of these climatic and landscape patterns is important to facilitate future landscape management for mammal conservation in forest-mosaics.  相似文献   

5.
物种丰富度垂直分布格局及影响机制   总被引:1,自引:0,他引:1  
物种丰富度分布格局是一定地域内物种丰富度沿三维空间的立体分布,包括物种丰富度在经度、纬度和垂直梯度(海拔高度和海水深度)三个维度上的空间分异。近年来物种多样性的垂直分布格局与机制研究得到了生物地理学家和生态学家的重视。物种丰富度的垂直分布格局存在多种类型,但随海拔增加而物种数减少的单调递减模型和中海拔物种丰富度最高的单峰模型较为常见。目前在机制研究中验证较多的是气候稳定性、生物因子(种间相互作用)、能量、生境异质性、干扰、进化时间、物种分化速率、面积、中域效应(mid-domain effect)、生态位保守性(niche conservatism)等假说和机制。物种丰富度的分布格局是多方面因素综合作用的结果;由于地理、地形、气候、地质演化历史、物种库和进化历史、物种分化速率、干扰等差异,在不同地区存在着特别的物种丰富度空间分布格局和机制;处于同一地区的不同类群的物种也因进化扩散历史和生态适应能力不同而呈现多样化的分布格局。因此,对不同地区和类群的物种丰富度格局和机制进行研究应具体分析后才能得到可信结论。  相似文献   

6.
Aim Variation in species richness has been related to (1) environmental conditions (water, energy and habitat characteristics) and (2) regional differences (contingent historical events and regional particularities that result in differences between regional faunas acting at broad extents). Whereas climatic factors have been widely studied, the effects of regional differences are less often quantified. This work aims to characterize global trends in the species richness of mammal assemblages with respect to both current and historical influences. Location All terrestrial biogeographical realms except Antarctica. Methods Species richness in checklists from 224 sites distributed worldwide were investigated by partitioning the variation between a general set of habitat/climate factors, biogeographical regions, and their overlaps. Additional analyses studied the specific overlaps of region, water and energy. Data were also divided according to area to determine if the strength of these effects varies according to the size of sites. Results Environmental effects explained 38% of richness variation across all sites, whereas environmentally independent regional effects explained 11% and the overlap between region and environment explained 13%. Results were similar when only larger sites (between 1000 km2 and 10,000 km2) were considered. However, the importance of the overlap between region and all environmental variables was greater in smaller sites (between 100 km2 and 1000 km2). In contrast, the specific importance of water and energy variables and their overlap with region was greater in larger sites. The strength of the independent effect of region remained almost invariant regardless of the size of the sites studied. Main conclusions The relationship between species richness and climate varies with scale and among regions. Although environmental variables are the strongest correlates of richness, the unique history and physiographic characteristics of a region produce differences between the richness of mammal assemblages and their response to environmental gradients. The importance of environmental variables varies with scale: climatic gradients are more important at coarse grain (larger sites), possibly as a result of their effects on species ranges, whereas habitat type is more important at the smaller sites, where the importance of ecological interactions increases. Therefore, regional differences and the scale at which richness is measured should be taken into account when evaluating species richness–energy hypotheses.  相似文献   

7.
王思齐  朱章明 《生态学报》2022,42(1):209-219
物种丰富度的大尺度地理格局及其成因是宏观生态学及生物地理学的中心议题之一。蔷薇属(Rosa L.)植物具有很高的经济价值和生态价值,探讨中国蔷薇属植物的丰富度分布格局及其影响因素可为该属植物资源的保护和合理开发利用乃至其系统进化研究提供重要依据。基于蔷薇属植物在中国的15451条分布数据和11种地理、气候等环境因子进行了物种丰富度分析和相关性分析,研究结果显示:(1)蔷薇属植物在中国分布不均匀。在水平方向上,蔷薇属植物于26.19°—34.29°N带内有较高的物种丰富度,之后随着纬度的增加而降低,且随着经度的增加表现为先增加后减少,于99.10°—108.47°E间存在明显的峰值;在垂直方向上,蔷薇属植物的物种丰富度随海拔的增加表现为先增加后减少,956.46—3518.60m范围内的丰富度最高。西南横断山区为蔷薇属物种分布的中心地区,新疆北部及东北长白山周边地区为局部聚集区。(2)蔷薇属物种丰富度与各能量、水分和生境异质性因子均呈正相关关系,与气候稳定性因子呈负相关关系。表明中国蔷薇属植物在水分和热量条件好、气候季节性变化小且生境异质性程度高的地方,有着更高的物种丰富度。(3)蔷薇属...  相似文献   

8.
AimAnticipating and mitigating the impacts of climate change on species diversity in montane ecosystems requires a mechanistic understanding of drivers of current patterns of diversity. We documented the shape of elevational gradients in avian species richness in North America and tested a suite of a priori predictions for each of five mechanistic hypotheses to explain those patterns.LocationUnited StatesMethodsWe used predicted occupancy maps generated from species distribution models for each of 646 breeding birds to document elevational patterns in avian species richness across the six largest U.S. mountain ranges. We used spatially explicit biotic and abiotic data to test five mechanistic hypotheses proposed to explain geographic variation in species richness.ResultsElevational gradients in avian species richness followed a consistent pattern of low elevation plateau‐mid‐elevation peak (as per McCain, 2009). We found support for three of the five hypotheses to explain the underlying cause of this pattern: the habitat heterogeneity, temperature, and primary productivity hypotheses.Main ConclusionsSpecies richness typically decreases with elevation, but the primary cause and precise shape of the relationship remain topics of debate. We used a novel approach to study the richness‐elevation relationship and our results are unique in that they show a consistent relationship between species richness and elevation among 6 mountain ranges, and universal support for three hypotheses proposed to explain the underlying cause of the observed relationship. Taken together, these results suggest that elevational variation in food availability may be the ecological process that best explains elevational gradients in avian species richness in North America. Although much attention has focused on the role of abiotic factors, particularly temperature, in limiting species’ ranges, our results offer compelling evidence that other processes also influence (and may better explain) elevational gradients in species richness.  相似文献   

9.
Many mechanisms have been proposed to explain broad scale spatial patterns in species richness. In this paper, we evaluate five explanations for geographic gradients in species richness, using South American owls as a model. We compared the explanatory power of contemporary climate, landcover diversity, spatial climatic heterogeneity, evolutionary history, and area. An important aspect of our analyses is that very different hypotheses, such as history and area, can be quantified at the same observation scale and, consequently can be incorporated into a single analytical framework. Both area effects and owl phylogenetic history were poorly associated with richness, whereas contemporary climate, climatic heterogeneity at the mesoscale and landcover diversity explained ca. 53% of the variation in species richness. We conclude that both climate and environmental heterogeneity should be retained as plausible explanations for the diversity gradient. Turnover rates and scaling effects, on the other hand, although perhaps useful for detecting faunal changes and beta diversity at local and regional scales, are not strong explanations for the owl diversity gradient.  相似文献   

10.
We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.  相似文献   

11.
Climate has been routinely indicated as a major determinant of broad-scale species richness patterns for a variety of taxa, but studies vary widely in attributing richness variation to the broad-scale distribution of energy, water, ecosystem productivity, habitat heterogeneity, or some combination thereof. Here, I report global and regional environment–richness relationships for the four classes of terrestrial vertebrates (mammals, birds, reptiles, amphibians) using identical sample units and the same set of climate (temperature, precipitation, annual actual evapotranspiration), productivity (normalized difference vegetation index), and topographic (elevation range) variables. My results strongly support concomitant availability of energy and water as the principal constraint on global richness for all vertebrate groups except reptiles, which are largely constrained by temperature. However, environment–richness models for all taxonomic groups varied widely when applied to single (continental-scale) biogeographic realms. In particular, I found strong support for the ‘water–energy dynamics hypothesis’ that models richness as a function of ambient energy (temperature) in high latitudes and water availability (precipitation) at low latitudes, partially independent of productivity. Ectotherm groups were more constrained by temperature than endotherms, and amphibians were more constrained by water availability than other groups. Although habitat heterogeneity, measured as elevation range, was a consistent contributor to global and regional richness models for all groups, its contribution was always minor compared to other variables. I conclude that temperature and water availability are key variables for modeling broad-scale vertebrate richness, but there remains significant room for taxon-specific modeling approaches and for the inclusion of non-climate factors related to evolutionary history and faunal assembly in different regions.  相似文献   

12.
Aim We deconstructed the mammal species richness pattern in Europe to assess the importance of large‐scale gradients in current macroclimate relative to biogeographic history, habitat heterogeneity and human influence (HHH variables) as richness determinants for total species, and for widespread and endemic species separately. Location Europe, west of 30° E. Methods We deconstructed total species richness (50‐km resolution) into its widespread and endemic species richness components. We used simultaneous autoregressive modelling (SAR) with information‐theoretic model selection and variation partitioning to assess the importance of macroclimate and HHH variables. The HHH variables included two historical factors, estimated by novel methodologies: (1) ice‐age‐driven dynamics, represented by accessibility to recolonization from hindcasting‐estimated glacial refugia, and (2) biogeographic peninsular dynamics, represented by distance to the entry region for the main European faunal source in western Asia. Results A large fraction of explained variation was shared between macroclimate and HHH in the SAR models. For total species richness, more variation could be uniquely attributed to macroclimate than to HHH, whereas for the deconstructed patterns (widespread and endemic species) the opposite was the case. Considering the individual factors, there was a strong peninsula effect on both widespread and endemic species richness but not on total richness. Main conclusions Both macroclimate and HHH variables (history, habitat heterogeneity and human influence) proved important predictors of species richness, but also difficult to disentangle. Notably, biogeographic history, in particular peninsular dynamics, is an important determinant of widespread and endemic species richness.  相似文献   

13.
Aim The global species richness patterns of birds and mammals are strongly congruent. This could reflect similar evolutionary responses to the Earth’s history, shared responses to current climatic conditions, or both. We compare the geographical and phylogenetic structures of both richness gradients to evaluate these possibilities. Location Global. Methods Gridded bird and mammal distribution databases were used to compare their species richness gradients with the current environment. Phylogenetic trees (resolved to family for birds and to species for mammals) were used to examine underlying phylogenetic structures. Our first prediction is that both groups have responded to the same climatic gradients. Our phylogenetic predictions include: (1) that both groups have similar geographical patterns of mean root distance, a measure of the level of the evolutionary development of faunas, and, more directly, (2) that richness patterns of basal and derived clades will differ, with richness peaking in the tropics for basal clades and in the extra‐tropics for derived clades, and that this difference will hold for both birds and mammals. We also explore whether alternative taxonomic treatments for mammals can generate patterns matching those of birds. Results Both richness gradients are associated with the same current environmental gradients. In contrast, neither of our evolutionary predictions is met: the gradients have different phylogenetic structures, and the richness of birds in the lowland tropics is dominated by many basal species from many basal groups, whereas mammal richness is attributable to many species from both few basal groups and many derived groups. Phylogenetic incongruence is robust to taxonomic delineations for mammals. Main conclusions Contemporary climate can force multiple groups into similar diversity patterns even when evolutionary trajectories differ. Thus, as widely appreciated, our understanding of biodiversity must consider responses to both past and present climates, and our results are consistent with predictions that future climate change will cause major, correlated changes in patterns of diversity across multiple groups irrespective of their evolutionary histories.  相似文献   

14.
中国蚂蚁丰富度地理分布格局及其与环境因子的关系   总被引:1,自引:0,他引:1  
物种丰富度分布格局及其形成机制的研究对于生物多样性保护具有重要意义。为了了解中国蚂蚁物种丰富度分布格局,利用中国省级尺度蚂蚁物种分布数据和环境信息,结合GIS和数理统计方法,探讨蚂蚁物种丰富度的地理分布格局与环境因子之间的关系。研究结果表明:(1)蚂蚁丰富度随纬度增加呈逐渐递减趋势,但缺乏显著的经度梯度。丰富度最高的地区主要集中在南方省份,我国北方、西北干旱区和青藏高原北部地区丰富度较低;(2)简单线性回归分析表明,能量、水分和季节性因素中,影响蚂蚁物种丰富度最强的因子分别为最冷月均温(TEMmin)(R2adj=0.532)、年均降水量(PREC)(R2adj=0.376)和年温度变化范围(TEMvar)(R2adj=0.539),而单个生境异质性因子对蚂蚁物种丰富度的影响均不显著;(3)最优模型由年均温(TEM)、海拔变化范围(ELErange)和年温度变化范围(TEMvar)组成,能够解释68.4%的蚂蚁丰富度地理分异。鉴于海拔变化范围更多地反映与温度相关的生境异质性,因此温度是限制中国蚂蚁分布的最重要因素。另外,分析结果还表明,海南、贵州、江西、四川、安徽和山西等6省蚂蚁区系调查最不充分,是未来发现蚂蚁新分布的热点地区。  相似文献   

15.
Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest.  相似文献   

16.
While patterns in species diversity have been well studied across large‐scale environmental gradients, little is known about how species’ interaction networks change in response to abiotic and biotic factors across such gradients. Here we studied seed‐dispersal networks on 50 study plots distributed over ten different habitat types on the southern slopes of Mt Kilimanjaro, Tanzania, to disentangle the effects of climate, habitat structure, fruit diversity and fruit availability on different measures of interaction diversity. We used direct observations to record the interactions of frugivorous birds and mammals with fleshy‐fruited plants and recorded climatic conditions, habitat structure, fruit diversity and availability. We found that Shannon interaction diversity (H) increased with fruit diversity and availability, whereas interaction evenness (EH) and network specialization (H2) responded differently to changes in fruit availability depending on habitat structure. The direction of the effects of fruit availability on EH and H2 differed between open habitats at the mountain base and structurally complex habitats in the forest belt. Our findings illustrate that interaction networks react differently to changes in environmental conditions in different ecosystems. Hence, our findings demonstrate that future projections of network structure and associated ecosystem functions need to account for habitat differences among ecosystems.  相似文献   

17.
Aim Broad‐scale spatial variation in species richness relates to climate and physical heterogeneity but human activities may be changing these patterns. We test whether climate and heterogeneity predict butterfly species richness regionally and across Canada and whether these relationships change in areas of human activity. Location Canada. Methods We modelled the ranges of 102 butterfly species using genetic algorithms for rule‐set production (GARP). We then measured butterfly species richness and potentially important aspects of human activity and the natural environment. These were included in a series of statistical models to determine which factors are likely to affect butterfly species richness in Canada. We considered patterns across Canada, within predominantly natural areas, human‐dominated areas and particular ecozones. We examined independent observations of butterfly species currently listed under Canada's endangered species legislation to test whether these were consistent with findings from statistical models. Results Growing season temperature is the main determinant of butterfly species richness across Canada, with substantial contributions from habitat heterogeneity (measured using elevation). Only in the driest areas does precipitation emerge as a leading predictor of richness. The slope of relationships between all of these variables and butterfly species richness becomes shallower in human‐dominated areas, but butterfly richness is still highest there. Insecticide applications, habitat loss and road networks reduce butterfly richness in human‐dominated areas, but these effects are relatively small. All of Canada's at‐risk butterfly species are located in these human‐dominated areas. Main conclusions Temperature affects butterfly species richness to a greater extent than habitat heterogeneity at fine spatial scales and is generally far more important than precipitation, supporting both the species richness–energy and habitat heterogeneity hypotheses. Human activities, especially in southern Canada, appear to cause surprisingly consistent trends in biotic homogenization across this region, perhaps through range expansion of common species and loss of range‐restricted species.  相似文献   

18.
Riparian zones in agricultural landscapes provide linear non-crop habitats for a variety of plant and mammal species, and hence are an important component of biodiversity. To date, variable responses of abundance, species richness, and species diversity of small mammals have been recorded in riparian and upland habitats. To address this variability, we provide a detailed analysis of seasonal changes in abundance and diversity of terrestrial small-mammal communities over a 7-year period within an agricultural landscape in south-central British Columbia, Canada. We tested the hypotheses (H) that abundance, species richness, and species diversity of communities of small mammals (H1), and demographic parameters of reproduction, recruitment, and survival of the major species: deer mouse (Peromyscus maniculatus) and montane vole (Microtus montanus) (H2), would be higher in riparian than upland habitats. Mean total abundance of small mammals was higher in summer and winter, and species richness higher in summer, in riparian than hedgerow habitats. Winter population data supported the total and species abundance patterns for small mammals, but species richness was similar, and diversity lower, in riparian than hedgerow sites during winter periods. Deer mice were the dominant species in terms of abundance and reproductive output for pregnancies and recruitment, but not survival, in riparian sites. Montane voles were similar in abundance and demographic parameters in the two habitats. House mice (Mus musculus) preferred hedgerows and wandering shrews (Sorex vagrans) riparian sites. Demographic parameters for deer mice and montane voles indicated that both riparian and hedgerow sites were “source” rather than “sink” habitats, and likely contribute to maintenance of mammal diversity in agricultural landscapes.  相似文献   

19.
We assessed the relationship between habitat heterogeneity and bird species richness and composition within wetlands of the floodplain of the Middle Paraná River, Argentina. Given the high habitat heterogeneity in these wetland systems, we sought to determine whether (i) there was a positive relationship between bird species richness and habitat heterogeneity; (ii) whether bird species richness was associated with certain types of individual habitat types; (iii) whether there was a pattern of species nestedness and turnover between sites as a function of habitat heterogeneity and composition, respectively; and (iv) whether individual species exhibited associations with habitat heterogeneity. Point counts were used to survey birds at 60 sites. We estimated the area of eight habitat types found within a 200‐m radius from the centre of each site and calculated number and Pielou's evenness of habitat types. These indices, together with area proportion of each habitat type, were used as explanatory factors of bird species richness in linear regression models. Habitat heterogeneity per se rather than area of individual habitat types was a more important predictor of species richness in these fluvial wetlands. Sites with more habitat types supported more bird species. Results showed that individual bird species were associated with different habitat types and, therefore, sites that contained more habitat types contained more species. Number of habitat types accounted for species nestedness between sites whereas composition of habitat types accounted for species turnover between sites. Results suggest that selection of heterogeneous sites by individual species could help explain the positive heterogeneity–species richness relationship. Our findings highlight the importance of habitat heterogeneity per se resulting from flood disturbances in maintaining bird richness in fluvial systems.  相似文献   

20.
Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号