首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9±2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97±0.47%), and the other leg at high tendon strain magnitude (4.72±1.08%) of similar frequency (0.5 Hz, 1 s loading, 1 s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3 s loading, 3 s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon–aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon–aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P>0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.  相似文献   

2.
Anterior cruciate ligament (ACL) volume and T21 relaxation times from magnetic resonance (MR) images have been previously shown to predict the structural properties of healing ligaments. We investigated whether MR imaging scan resolution and condition (in vivo, in situ, or ex vivo) affected ACL volume and T21 relaxation times in intact ligaments. ACLs of 14 pigs were imaged using a 3 T scanner and a six-channel flexcoil using at least two of four possible scan conditions: (1) in vivo moderate resolution (n = 14); (2) in vivo high resolution (n = 7); (3) in situ high resolution acquired within 60 minutes of euthanasia (n = 6); and (4) ex vivo high resolution following hind limb disarticulation and one freeze-thaw cycle (n = 7). T21 relaxation times were mapped to the ACL voxels. The total ACL volume was then divided into four sub-volumes (Vol1–4) based on predetermined increasing ranges of T21 times. ACL T21 statistics (first quartile, median, and standard deviation (SD)) were computed. Scan resolution had no effect on the total ACL volume, but Vol1 and first quartile T21 times decreased with high resolution and in situ/ex vivo scan conditions. The most dramatic differences in T21 summary statistics were between in vivo moderate and ex vivo high resolution scan conditions that included a freeze-thaw cycle: ACL T21 SD increased by over 50% in 9 animals, and more than 90% in 4 animals. Our results indicated that T21-based prediction models to quantify in vivo structural properties of healing ligaments should be based on high resolution in vivo MR scan conditions.  相似文献   

3.
Greater hamstring musculotendinous stiffness is associated with lesser ACL loading mechanisms. Stiffness is enhanced via training, but previous investigations evaluated tendon rather than musculotendinous stiffness, and none involved the hamstrings. We evaluated the effects of isometric and isotonic training on hamstring stiffness and ACL loading mechanisms. Thirty-six healthy volunteers were randomly assigned to isometric, isotonic, and control groups. Isometric and isotonic groups completed 6 weeks of training designed to enhance hamstring stiffness. Stiffness, anterior tibial translation, and landing biomechanics were measured prior to and following the interventions. Hamstring stiffness increased significantly with isometric training (15.7%; p = 0.006), but not in the isotonic (13.5%; p = 0.089) or control (0.4%; p = 0.942) groups. ACL loading mechanisms changed in manners consistent with lesser loading, but these changes were not statistically significant. These findings suggest that isometric training may be an important addition to ACL injury prevention programs. The lack of significant changes in ACL loading mechanisms and effects of isotonic training were likely due to the small sample sizes per group and limited intervention duration. Future research using larger sample sizes and longer interventions is necessary to determine the effects of enhancing hamstring stiffness on ACL loading and injury risk.  相似文献   

4.
PurposeThis study examined the reliability of patellar tendon cross sectional area (CSA) measurement using brightness mode ultrasonography.MethodsThe patellar tendon CSA of fourteen participants was examined on two different days and at three different positions (proximal, median and distal). Five trials per day were conducted in each position, replacing the ultrasound probe on every trial. The images were examined by three different and equally experienced observers. We compared the mean of the five trials in each position to examine the day, observer and position effect. Further, Bland and Altman plots, root mean square (RMS) differences and intraclass correlation coefficients (ICC) were calculated.ResultsThere was a significant (p < 0.05) day, observer and position effect on the CSA, while the average ICC was 0.592. The Bland and Altman plots showed that differences between conditions or groups, should be in average lower than 37% or higher than 55% of the patellar tendon CSA to be important for clinical or intervention studies.ConclusionOur findings show low reliability of the method, which resulted from the low clarity and unclear visibility of tissue boundaries in the ultrasound images. Therefore, the measurement of the CSA of the patellar tendon using ultrasound does not provide accurate and reliable results.  相似文献   

5.
The purpose of this study was to quantify strain and elongation of the long head of the biceps femoris (BFlh) and the semitendinosus (ST) tendon/aponeurosis. Forty participants performed passive knee extension trials from 90° of knee flexion to full extension (0°) followed by ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of BFlh and ST tendon/aponeurosis. Three-way analysis of variance designs indicated that: (a) Tendon/aponeurosis (passive) elongation and strain were higher for the BFlh than the ST as the knee was passively extended (p < 0.05), (b) contraction at each angular position was accompanied by a smaller BFlh tendon/aponeurosis (active) strain and elongation than the ST at higher levels of effort (p < 0.05) and (c) combined (passive and active) strain was significantly higher for the BFlh than ST during ramp contraction at 0° but the opposite was observed for the 45° and 90° flexion angle tests (p < 0.05). Passive elongation of tendon/aponeurosis has an important effect on the tendon/aponeurosis behavior of the hamstrings and may contribute to a different loading of muscle fibers and tendinous tissue between BFlh and ST.  相似文献   

6.
The purpose of this study was to examine the moment-arm and cross-sectional area (CSA) of the patellar tendon (PT) and the hamstrings after anterior cruciate ligament (ACL) reconstruction. The right knee of five males who underwent ACL reconstruction with a PT graft and five age-matched controls was scanned using magnetic resonance image scans. Based on three-dimensional (3D) solids of the PT, CSAs and moment-arms of semitendinous (ST), biceps femoris (BF) long head and semimembranosus (SM) were estimated. Analysis of variance indicated no significant group differences in muscle moment-arms (p>0.05). 3D moment-arms of PT, ST and BF were significantly lower than the corresponding 2D values (p < 0.05). The ACL group displayed a significantly higher maximum BF CSA, a lower ST CSA (p < 0.05) but similar PT and SM CSAs compared with controls. It is concluded that any alterations in PT properties 1 year after harvesting do not affect knee muscle moment-arms compared with age-matched controls. Moment-arm estimation differed between 3D and 2D data, although it did not affect comparisons between ACL reconstruction group and controls. Design of rehabilitation programmes should take into consideration a potential alteration in hamstring morphology following surgery with a PT graft.  相似文献   

7.
The purpose of this study was to compare the architectural parameters of the long head of biceps femoris (BFlh) and semitendinosus (ST) muscles by comparing measurements from ultrasound (US) with those obtained from direct dissection. The BFlh and ST architectures were examined bilaterally in 6 legs from 3 male cadavers. The fascicle length, pennation angle, muscle thickness and muscle and tendon length were obtained from direct measurement and US scans along each muscle. Intraclass correlation coefficients between the two methods ranged from 0.905 to 0.913 for the BFlh variables and from 0.774 to 0.974 for the ST parameters. Compared with the direct measurements, the US method showed a mean typical error of 0.09–0.14 cm for muscle thickness, 1.01–1.31° for the pennation angle, 0.92–1.71 cm for fascicle length and muscle–tendon length measurements. The US method is a valid alternative tool for assessing basic architectural parameters of ST and BFlh components of the hamstring muscles.  相似文献   

8.
It is not currently known how the mechanical properties of human tendons change with maturation in the two sexes. To address this, the stiffness and Young's modulus of the patellar tendon were measured in men, women, boys and girls (each group, n=10). Patellar tendon force (Fpt) was calculated from the measured joint moment during a ramped voluntary isometric knee extension contraction, the antagonist knee extensor muscle co-activation quantified from its electromyographical activity, and the patellar tendon moment arm measured from magnetic resonance images. Tendon elongation was imaged using the sagittal-plane ultrasound scans throughout the contraction. Tendon cross-sectional area was measured at rest from ultrasound scans in the transverse plane. Maximal Fpt and tendon elongation were (mean±SE) 5453±307 N and 5±0.5 mm for men, 3877±307 N and 4.9±0.6 mm for women, 2017±170 N and 6.2±0.5 mm for boys and 2169±182 N and 5.9±0.7 mm for girls. In all groups, tendon stiffness and Young's modulus were examined at the level that corresponded to the maximal 30% of the weakest participant's Fpt and stress, respectively; these were 925–1321 N and 11.5–16.5 MPa, respectively. Stiffness was 94% greater in men than boys and 84% greater in women than girls (p<0.01), with no differences between men and women, or boys and girls (men 1076±87 N/mm; women 1030±139 N/mm; boys 555±71 N/mm and girls 561.5±57.4 N/mm). Young's modulus was 99% greater in men than boys (p<0.01), and 66% greater in women than girls (p<0.05). There were no differences in modulus between men and women, or boys and girls (men 597±49 MPa; women 549±70 MPa; boys 255±42 MPa and girls 302±33 MPa). These findings indicate that the mechanical stiffness of tendon increases with maturation due to an increased Young's modulus and, in females due to a greater increase in tendon cross-sectional area than tendon length.  相似文献   

9.
Current methods for measuring in vivo 3D muscle-tendon moment arms generally rely on the acquisition of magnetic resonance imaging (MRI) scans at multiple joint angles. However, for patients with musculoskeletal pathologies such as fixed contractures, moving a joint through its full range of motion is not always feasible. The purpose of this research was to develop a simple, but reliable in vivo 3D Achilles tendon moment arm (ATMA) technique from a single static MRI scan. To accomplish this, for nine healthy adults (5 males, 4 females), the geometry of a cylinder was fit to the 3D form of the talus dome, which was used to estimate the talocrural flexion/extension axis, and a fifth-order polynomial fit to the line of action of the Achilles tendon. The single static scan in vivo 3D ATMA estimates were compared to estimates obtained from the same subjects at the same ankle joint angles using a previously validated 3D dynamic MRI based in vivo ATMA measurement technique. The ATMA estimates from the single scan in vivo 3D method (52.5 mm ± 5.6) were in excellent agreement (ICC = 0.912) to the validated in vivo 3D method (51.5 mm ± 5.1). These data show reliable in vivo 3D ATMA can be obtained from a single MRI scan for healthy adult populations. The single scan, in vivo 3D ATMA technique provides researchers with a simple, but reliable method for obtaining subject-specific ATMAs for musculoskeletal modelling purposes.  相似文献   

10.
11.
12.
To examine and compare the loading related changes in micro-morphology of the patellar tendon.Fifteen healthy young males (age 19 ± 3 yrs, body mass 83 ± 5 kg) were utilised in a within subjects matched pairs design. B mode ultrasound images were taken in the sagittal plane of the patellar tendon at rest with the knee at 90° flexion. Repeat images were taken whilst the subjects were carrying out maximal voluntary isometric contractions.Spatial frequency parameters related to the tendon morphology were determined within regions of interest (ROI) from the B mode images at rest and during isometric contractions.A number of spatial parameters were observed to be significantly different between resting and contracted images (Peak spatial frequency radius (PSFR), axis ratio, spatial Q-factor, PSFR amplitude ratio, and the sum). These spatial frequency parameters were indicative of acute alterations in the tendon micro-morphology with loading.Acute loading modifies the micro-morphology of the tendon, as observed via spatial frequency analysis. Further research is warranted to explore its utility with regard to different loading induced micro-morphological alterations, as these could give valuable insight not only to aid strengthening of this tissue but also optimization of recovery from injury and treatment of conditions such as tendinopathies.  相似文献   

13.
Magnetic resonance imaging (MRI) could potentially be used to non-invasively predict the strength of an ACL graft after ACL reconstruction. We hypothesized that the volume and T2 relaxation parameters of the ACL graft measured with MRI will predict the graft structural properties and anteroposterior (AP) laxity of the reconstructed knee. Nine goats underwent ACL reconstruction using a patellar tendon autograft augmented with a collagen or collagen-platelet composite. After 6 weeks of healing, the animals were euthanized, and the reconstructed knees were retrieved and imaged on a 3T scanner. AP laxity was measured prior to dissecting out the femur-graft-tibia constructs which were then tested to tensile failure to determine the structural properties. Regression analysis indicated a statistically significant relationship between the graft volume and the failure load (r(2)=0.502; p=0.049). When graft volume was normalized to the T2 relaxation time, the relationship was even greater (r(2)=0.687; p=0.011). There was a significant correlation between the graft volume and the linear stiffness (r(2)=0.847; p<0.001), which remained significant with T2 normalization (r(2)=0.764; p=0.002). For AP laxity at 30° flexion, there was not a significant correlation with graft volume, but there was a significant correlation with volume normalized by the T2 relaxation time (r(2)=0.512; p=0.046). These results suggest that MRI volumetric measures combined with graft T2 properties may be useful in predicting the structural properties of ACL grafts.  相似文献   

14.
Minimising post-operative donor site morbidity is an important consideration when selecting a graft for surgical reconstruction of the torn anterior cruciate ligament (ACL). One of the most common procedures, the bone-patellar tendon-bone (BPTB) graft involves removal of the central third from the tendon. However, it is unknown whether the mechanical properties of the donor site (patellar tendon) recover. The present study investigated the mechanical properties of the human patellar tendon in 12 males (mean±S.D. age: 37±14 years) who had undergone surgical reconstruction of the ACL using a BPTB graft between 1 and 10 years before the study (operated knee; OP). The uninjured contralateral knee served as a control (CTRL). Patellar tendon mechanical properties were assessed in vivo combining dynamometry with ultrasound imaging. Patellar tendon stiffness was calculated from the gradient of the tendon's force–elongation curve. Tendon stiffness was normalised to the tendon's dimensions to obtain the tendon's Young's modulus. Cross-sectional area (CSA) of OP patellar tendons was larger by 21% than CTRL tendons (P<0.01). Patellar tendon stiffness was not significantly different between OP and CTRL tendons, but the Young's modulus was lower by 24% in OP tendons (P<0.01). A compensatory enlargement of the patellar tendon CSA, presumably due to scar tissue formation, enabled a recovery of tendon stiffness in the OP tendons. The newly formed tendon tissue had inferior properties as indicated by the reduced tendon Young's modulus, but it increased to a level that enabled recovery of tendon stiffness.  相似文献   

15.
The present study investigated the effects of submaximal sustained and maximal repetitive contractions on the compliance of human vastus lateralis (VL) tendon and aponeurosis in vivo using two different fatiguing protocols. Twelve male subjects performed three maximum voluntary isometric contractions (MVC) of the knee extensors before and after two fatiguing protocols on a dynamometer. The first fatiguing protocol consisted of a long-lasting sustained isometric knee extension contraction at 25% MVC until failure (inability to hold the defined load). The second fatiguing protocol included long-lasting isokinetic (90°/s) knee extension contractions, where maximum moment was exerted and failure was proclaimed when this value fell below 70% of unfatigued maximum isokinetic moment. Ultrasonography was used to determine the elongation and strain of the VL tendon and aponeurosis. Muscle fatigue was indicated by a significant decrease in maximum resultant knee extension moment (p < 0.05) observed during the MVCs after both long-lasting contractions. No significant (p > 0.05) differences in elongation and strain of the VL tendon and aponeurosis were found, when compared every 300 N (tendon force) before and after the fatiguing protocols. The present data indicate, that the VL tendon and aponeurosis in vivo do not suffer from changes in the compliance neither after long-lasting static mechanical loading (strain ~3.2%) nor after long-lasting cyclic mechanical loading (strain 6.2–5.5%).  相似文献   

16.
Ectopic tendon mineralization can develop following tendon rupture or trauma surgery. The pathogenesis of ectopic tendon mineralization and its clinical impact have not been fully elucidated yet. In this study, we utilized a mouse Achilles tendon injury model to determine whether ectopic tendon mineralization alters the biomechanical properties of the tendon and whether BMP signaling is involved in this condition. A complete transverse incision was made at the midpoint of the right Achilles tendon in 8-week-old CD1 mice and the gap was left open. Ectopic cartilaginous mass formation was found in the injured tendon by 4 weeks post-surgery and ectopic mineralization was detected at 8 to 10 weeks post-surgery. Ectopic mineralization grew over time and volume of the mineralized materials of 25-weeks samples was about 2.5 fold bigger than that of 10-weeks samples, indicating that injury-induced ectopic tendon mineralization is progressive. In vitro mechanical testing showed that max force, max stress and mid-substance modulus in the 25-weeks samples were significantly lower than the 10-weeks samples. We observed substantial increases in expression of bone morphogenetic protein family genes in injured tendons 1 week post-surgery. Immunohistochemical analysis showed that phosphorylation of both Smad1 and Smad3 was highly increased in injured tendons as early as 1 week post-injury and remained high in ectopic chondrogenic lesions 4-weeks post-injury. Treatment with the BMP receptor kinase inhibitor (LDN193189) significantly inhibited injury-induced tendon mineralization. These findings indicate that injury-induced ectopic tendon mineralization is progressive, involves BMP signaling and associated with deterioration of tendon biomechanical properties.  相似文献   

17.
A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1 MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050 N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550 N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100 N, and of force values every 2 m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500 N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500 N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo.  相似文献   

18.
Stress, strain and modulus are regularly used to characterize material properties of tissue samples. However, when comparing results from different studies it is evident the reported material properties, particularly failure strains, vary hugely. The aim of our study was to characterize how and why specimen length and cross-sectional area (CSA) appear to influence failure stress, strain and modulus in fascicles from two functionally different tendons. Fascicles were dissected from five rat tails and five bovine foot extensors, their diameters determined by a laser micrometer, and loaded to failure at a range of grip-to-grip lengths. Strain to failure significantly decreased with increasing in specimen length in both rat and bovine fascicles, while modulus increased. Specimen length did not influence failure stress in rat tail fascicles, although in bovine fascicles it was significantly lower in the longer 40 mm specimens compared to 5 and 10 mm specimens. The variations in failure strain and modulus with sample length could be predominantly explained by end-effects. However, it was also evident that strain fields along the sample length were highly variable and notably larger towards the ends of the sample than the mid-section even at distances in excess of 5 mm from the gripping points. Failure strain, stress and modulus correlated significantly with CSA at certain specimen lengths. Our findings have implications for the mechanical testing of tendon tissue: while it is not always possible to control for fascicle length and/or CSA, these parameters have to be taken into account when comparing samples of different dimensions.  相似文献   

19.
Blastocystis sp. is a common gut-dwelling protist of both humans and animals. A cross-sectional survey among humans and their dogs was conducted to determine the prevalence of Blastocystis infection and to characterize the subtype (ST) distribution in an urban community in the Philippines. Fecal specimens from 1,271 humans and 145 dogs were collected and inoculated in diphasic culture medium. Prevalence of Blastocystis by culture was 13.0% (95% CI = 11.2–15.0) and 14.5% (95% CI = 9.6–21.2) for humans and dogs, respectively. A total of 168 culture isolates were genotyped using polymerase chain reaction (PCR) with seven pairs of ST-specific sequence-tagged-site (STS) primers. In humans, the ST present in this study were ST1 with 22.6% (95% CI = 17.2–29.0), ST2 with 3.1% (95% CI = 1.3–6.7), ST3 with 41.4% (95% CI = 34.9–48.6), ST4 with 14.8% (95% CI = 10.5–20.6), ST5 with 4.1% (95% CI = 2.0–8.0), and unknown ST with 13.9% (95% CI = 9.6–19.4). In dogs, the ST present in this study were ST1 with 4.3% (95% CI = 0.0–29.0), ST2 with 8.7% (95% CI = 1.3–28.0), ST3 with 17.4% (95% CI = 6.4–37.7), ST4 with 13.0% (95% CI = 3.7–33.0), ST5 with 13.0% (95% CI = 3.7–33.0), and unknown ST with 47.8% (95% CI = 29.2–67.0). This is the first study that reported Blastocystis ST4 in human and canine hosts in the Philippines.  相似文献   

20.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号