首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segment lengths are known to influence walking kinematics and muscle activity patterns. During level walking at the same speed, taller individuals take longer, slower strides than shorter individuals. Based on this, we sought to determine if segment lengths also influenced hill walking strategies. We hypothesized that individuals with longer segments would display more joint flexion going uphill and more extension going downhill as well as greater lateral gastrocnemius and vastus lateralis activity in both directions. Twenty young adults of varying heights (below 155 cm to above 188 cm) walked at 1.25 m/s on a level treadmill as well as 6° and 12° up and downhill slopes while we collected kinematic and muscle activity data. Subsequently, we ran linear regressions for each of the variables with height, leg, thigh, and shank length. Despite our population having twice the anthropometric variability, the level and hill walking patterns matched closely with previous studies. While there were significant differences between level and hill walking, there were few hill walking variables that were correlated with segment length. In support of our hypothesis, taller individuals had greater knee and ankle flexion during uphill walking. However, the majority of the correlations were between tibialis anterior and lateral gastrocnemius activities and shank length. Contrary to our hypothesis, relative step length and muscle activity decreased with segment length, specifically shank length. In summary, it appears that individuals with shorter segments require greater propulsion and toe clearance during uphill walking as well as greater braking and stability during downhill walking.  相似文献   

2.
Tissue overloading is a major contributor to shoulder musculoskeletal injuries. Previous studies attempted to use regression-based methods to predict muscle activities from shoulder kinematics and shoulder kinetics. While a regression-based method can address co-contraction of the antagonist muscles as opposed to the optimization method, most of these regression models were based on limited shoulder postures. The purpose of this study was to develop a set of regression equations to predict the 10th percentile, the median, and the 90th percentile of normalized electromyography (nEMG) activities from shoulder postures and net shoulder moments. Forty participants generated various 3-D shoulder moments at 96 static postures. The nEMG of 16 shoulder muscles was measured and the 3-D net shoulder moment was calculated using a static biomechanical model. A stepwise regression was used to derive the regression equations. The results indicated the measured range of the 3-D shoulder moment in this study was similar to those observed during work requiring light physical capacity. The r2 of all the regression equations ranged between 0.228 and 0.818. For the median of the nEMG, the average r2 among all 16 muscles was 0.645, and the five muscles with the greatest r2 were the three deltoids, supraspinatus, and infraspinatus. The results can be used by practitioners to estimate the range of the shoulder muscle activities given a specific arm posture and net shoulder moment.  相似文献   

3.
It is well established that metabolic cost is minimized at an individual’s running preferred step frequency (PSF). It has been proposed that the metabolic minimum at PSF is due to a tradeoff between mechanical factors, however, this ignores muscle activity, the primary consumer of energy. Thus, we hypothesized that during downhill running, total muscle activity would be greater with deviations from PSF. Specifically, we predicted that slow step frequencies would have greater stance activity while fast step frequencies would have greater swing activity. We collected metabolic cost and leg muscle activity data while 10 healthy young adults ran at 3.0 m/s for 5 min at level and downhill at PSF and ±15% PSF. In support of our hypothesis, there was a significant main effect for step frequency for both metabolic cost and total muscle activity. In addition, there was greater muscle activity in the stance phase during the slower step frequency while muscle activity was greater in the swing phase during the fast step frequency. This suggests that PSF is partially determined by the tradeoff between the greater cost of muscle activity in the swing phase and lower cost in the stance phase with faster step frequency.  相似文献   

4.
The present study investigated the influence of mechanical constraints (load and movement velocity) on the movement accuracy during a reciprocal aiming precision task. Seven participants had to point rhythmically and alternatively (with flexion–extension of the right elbow) a cursor at two targets as accurately as possible. Two loads (applied to the limb effectors; 500 and 2500 g), two movement frequencies (1.25 and 1.75 Hz) as well as two target sizes (1 and 5 cm) were manipulated. Surface EMG activity of both biceps brachii and triceps brachii was recorded. Attentional demands, reflecting the central cost associated with the performance of aiming movements was assessed using a dual-task paradigm (via a probe reaction time task – RT). While the results demonstrated a significant degradation of pointing accuracy with mechanical loading (mean absolute error – AE for 500 g load: 0.32 mm ± 0.64; mean AE for 2500 g load: 0.51 ± 0.74 mm), no significant effect of movement frequency was found. For the two mechanical constraints, the mental effort to meet the task demands remained the same (mean RT−500g: 370 ± 123 ms; mean RT−2500g: 395 ± 119 ms). Electromyographic activity of both biceps brachii and triceps brachii muscles evidenced neural adaptations to changes in mechanical constraints. Put together, the present findings suggest that the cause of the observed loss of movement accuracy may probably result from more peripheral alterations such as an impairment of the afferent information processing.  相似文献   

5.
    
Climbing is an increasingly popular recreational and competitive behavior, engaged in a variety of environments and styles. However, injury rates are high in climbing populations, especially in the upper extremity and shoulder. Despite likely arising from an arboreal, climbing ancestor and being closely related to primates that are highly proficient climbers, the modern human shoulder has devolved a capacity for climbing. Limited biomechanical research exists on manual climbing performance. This study assessed kinematic and muscular demands during a bimanual climbing task that mimicked previous work on climbing primates. Thirty participants were recruited – 15 experienced and 15 inexperienced climbers. Motion capture and electromyography (EMG) measured elbow, thoracohumeral and trunk angles, and activity of twelve shoulder muscles, respectively, of the right-side while participants traversed across a horizontal climbing apparatus. Statistical parametric mapping was used to detect differences between groups in kinematics and muscle activity. Experienced climbers presented different joint motions that more closely mimicked the kinematics of climbing primates, including more elbow flexion (p = 0.0045) and internal rotation (p = 0.021), and less thoracohumeral elevation (p = 0.046). Similarly, like climbing primates, experienced climbers generally activated the shoulder musculature at a lower percentage of maximum, particularly during the exchange from support to swing and swing to support phase. However, high muscle activity was recorded in all muscles in both participant groups. Climbing experience coincided with a positive training effect, but not enough to overcome the high muscular workload of bimanual climbing. Owing to the evolved primary usage of the upper extremity for low-force, below shoulder-height tasks, bimanual climbing may induce high risk of fatigue-related musculoskeletal disorders.  相似文献   

6.
    
Modeling the lumbar spine as a single rigid segment does not consider the relative contribution of regional or segmental motion that may occur during a task. The current study used a multi-segment model to measure three-dimensional (3D) upper and lower lumbar spine motion during walking and prone hip extension (PHE). The degree of segmental redundancy during these movements was assessed by calculating the cross-correlation of the segmental angle time series (R0) and the correlation of the segmental ranges of motion (RROM). All correlation coefficients (R0, RROM) were interpreted as follows: very strong (0.80–1.00), strong (0.60–0.79), moderate (0.40–0.59), weak (0.20–0.39), and very weak (0.00–0.19). Strong/very strong positive R0 were demonstrated between the two segments in all three planes during PHE and in the transverse plane during walking. Weak/moderate R0 were demonstrated in the sagittal and frontal planes during walking. Strong/very strong positive RROM were demonstrated in the transverse plane during PHE, and moderate positive RROM was demonstrated in the sagittal plane during walking. Non-significant RROM were demonstrated for all other planes and movements. These results suggest the motion patterns of the upper and lower lumbar regions during walking and PHE are sufficiently distinct to warrant the use a multi-segment model for these movements. It also appears that the degree of redundancy between the upper and lower lumbar regions may be task-dependent.  相似文献   

7.
An increased knee abduction angle during jump-landing has been identified as a risk factor for anterior cruciate ligament injuries. Activation of the hip abductors may decrease the knee abduction angle during jump-landing. The purpose of this study was to examine the effects of a resistance band on the internal hip abduction moment and gluteus medius activation during the pre-landing (100 ms before initial contact) and early-landing (100 ms after initial contact) phases of a jump–landing–jump task. Thirteen male and 15 female recreational athletes (age: 21.1±2.4 yr; mass: 73.8±14.6 kg; height: 1.76±0.1 m) participated in the study. Subjects performed jump–landing–jump tasks with or without a resistance band applied to their lower shanks. During the with-band condition, subjects were instructed to maintain their movement patterns as performing the jump-landing task without a resistance band. Lower extremity kinematics, kinetics, and gluteus medius electromyography (EMG) were collected. Applying the band increased the average hip abduction moment during pre-landing (p<0.001, Cohen?s d (d)=2.8) and early-landing (p<0.001, d=1.5), and the average gluteus medius EMG during pre-landing (p<0.001, d=1.0) and early-landing (p=0.003, d=0.55). Applying the band decreased the initial hip flexion angle (p=0.028, d=0.25), initial hip abduction angle (p<0.001, d=0.91), maximum knee flexion angle (p=0.046, d=0.17), and jump height (p=0.004, d=0.16). Applying a resistance band provides a potential strategy to train the strength and muscle activation for the gluteus medius during jump-landing. Additional instructions and feedback regarding hip abduction, hip flexion, and knee flexion may be required to minimize negative changes to other kinematic variables.  相似文献   

8.
9.
    
PurposeEvaluate whether wearing a passive back-support exoskeleton during repetitive lifting impairs motor variability of erector spinae muscle and spine movement and whether this association is influenced by lifting style.Scope: Thirty-six healthy males performed ten lifts in four randomized conditions with exoskeleton (without, with) and lifting style (squat, stoop) as dependent variables. One lifting cycle contained four phases: bending/straighten without/with load. Erector spinae muscular activity, thoracic kyphosis and lumbar lordosis were measured with surface electromyography and gravimetric position sensors, respectively. Absolute and relative cycle-to-cycle variability were calculated. The effects of exoskeleton and exoskeleton × lifting style were assessed on outcomes during the complete lifting cycle and its four phases.ResultsFor the complete lifting cycle, muscular variability and thoracic kyphosis variability decreased whereas lumbar lordosis variability increased with exoskeleton. For lifting phases, effects of exoskeleton were mixed. Absolute and relative muscular variability showed a significant interaction effect for the phase straighten with load; variability decreased with exoskeleton during squat lifting.ConclusionUsing the exoskeleton impaired several motor variability parameters during lifting, supporting previous findings that exoskeletons may limit freedom of movement. The impact of this result on longer-term development of muscular fatigue or musculoskeletal disorders cannot yet be estimated.  相似文献   

10.
    
High density-surface EMG (HD-sEMG) is a non-invasive technique to measure electrical muscle activity with multiple (more than two) closely spaced electrodes overlying a restricted area of the skin. Besides temporal activity HD-sEMG also allows spatial EMG activity to be recorded, thus expanding the possibilities to detect new muscle characteristics. Especially muscle fiber conduction velocity (MFCV) measurements and the evaluation of single motor unit (MU) characteristics come into view. This systematic review of the literature evaluates the clinical applications of HD-sEMG. Although beyond the scope of the present review, the search yielded a large number of “non-clinical” papers demonstrating that a considarable amount of work has been done and that significant technical progress has been made concerning the feasibility and optimization of HD-sEMG techniques. Twenty-nine clinical studies and four reviews of clinical applications of HD-sEMG were considered. The clinical studies concerned muscle fatigue, motor neuron diseases (MND), neuropathies, myopathies (mainly in patients with channelopathies), spontaneous muscle activity and MU firing rates. In principle, HD-sEMG allows pathological changes at the MU level to be detected, especially changes in neurogenic disorders and channelopathies. We additionally discuss several bioengineering aspects and future clinical applications of the technique and provide recommendations for further development and implementation of HD-sEMG as a clinical diagnostic tool.  相似文献   

11.
    
How adaptation of a postsynaptic transient outward current might affect the efficacy of sensorimotor transmission was investigated. The transmission signals that were studied were a 5 ms conditioned stimulus (CS) and a 60 ms US drawn from intracellularly recorded, depolarizing postsynaptic potentials (PSPs) elicited in pyramidal neurons of the cat motor cortex by a click CS and a glabella tap US, respectively. SPICE, a program used to analyze electrical circuits, was used to simulate the cortical neuron containing the adaptive outward current. Changes in the magnitude and latency of rise to firing threshold of the PSPs were compared i) after presynaptic augmentation of a CS input in the absence of an adaptive postsynaptic current and ii) after decreasing the magnitude of an adaptive postsynaptic current that was rapidly activated by depolarization. Effects of short (6 ms) and long (24 ms) inactivation time constants of the postsynaptic current were also studied. In both presynaptic adaptation and postsynaptic adaptation, the potentiation of the magnitude of the CS-induced PSP was similar, with the latency to threshold being reduced by \" 1 ms in both cases. The effects on the US PSP differed. Presynaptic adaptation affecting the CS had no effect on the US. Adaptation of the CS by a postsynaptic outward current with a 6 ms inactivation time constant, reduced the latency to threshold of an EPSP from a nearby US synapse by up to 6 ms by augmenting the initial portion of the slowly rising US-induced PSP. Adaptation of a postsynaptic current with a 24 ms inactivation time constant reduced the latency of response to the US PSP by up to 16 ms. When the US synapse was relocated to the soma, the reduction in US latency caused by adaptation of the outward current at the CS synapse was reduced by up to one half. The latency of slowly rising components of integrated synaptic responses to compound CSs of > 5 ms duration from multiple synaptic inputs would be expected to show reductions corresponding to those of the US. We conclude that potentiation of synaptic transmission by adaptation of a postsynaptic outward current can result in reductions of latency of sensorimotor transmission that can significantly affect the timing and accuracy of controlled motor tasks. These effects depend significantly on the locations of the synaptic inputs within the cell.  相似文献   

12.
    
A series of metal carboxylates containing pyridine N-oxide are prepared via one pot synthesis and solid phase synthesis. The structural variations from metal to metal are observed. In the case of reactions of manganese(II) acetate with pyridine N-oxide in the presence of aromatic carboxylic acids, polymeric complexes with bridging aromatic carboxylate as well as bridging pyridine N-oxide are observed. Whereas, the reaction of copper(II) acetate with pyridine N-oxide in the presence of an aromatic carboxylic acid led to mononuclear or binuclear paddle wheel carboxylate complexes with monodentate pyridine N-oxide. Co-crystal of two neutral complexes having composition [Cu2(OBz)4(MeOH)2][Cu2(OBz)4(pyO)2] (where OBz = benzoate, pyO = pyridine N-oxide) each neutral parts have paddle wheel structure. Solid phase reaction of zinc chloride with sodium benzoate prepared in situ and pyridine N-oxide leads to a tetra-nuclear zinc complex.  相似文献   

13.
The objective was to elucidate the relation between the Macro EMG parameters fiber density (FD) and Macro amplitude in reinnervation in the purpose to use the FD parameter as a surrogate marker for reinnervation instead of the Macro amplitude.Macro EMG with FD was performed in 278 prior polio patients. The Biceps Brachii and the Tibialis anterior muscles were investigated.FD was more sensitive for detection of signs of reinnervation but showed lesser degree of abnormality than the Macro amplitude. FD and Macro MUP amplitude showed a non-linear relation with a great variation in FD for given Macro amplitude level.The relatively smaller increase in FD compared to Macro amplitude in addition to the non-linear relationship between the FD and the Macro amplitude regarding reinnervation in prior polio can be due to technical reasons and muscle fiber hypertrophy. The FD parameter has a relation to Macro MUP amplitude but cannot alone be used as a quantitative marker of the degree of reinnervation.  相似文献   

14.
Measurement techniques or instruments are typically evaluated along the dimensions of reliability and validity. The focus of this investigation was to assess the test–retest reliability of a static EMG scan profile (sESP) method using 64 chronic pain participants. The test–retest interval was 30–33 days. Reliability coefficients were expressed using the Profile Similarity Coefficient (r p) in place of the more traditional Pearson Product Moment Correlation. sESP reliabilities were calculated for posture laterality for the head and neck, back, and overall profiles (head, neck, and back combined). The reliability coefficients ranged from .57 to .80. The back profile was the least reliable with a range of .55–.59 whereas the overall profiles were the most reliable, .78–.80. The analysis method was judged to be very conservative with its use of r p, a protracted intertest interval period, and weighting the data by their variances. These results can be viewed as setting the lower reliability limit for sESP.  相似文献   

15.
16.
The clinical application of EMG requires that the recorded signal is representative of the muscle of interest and is not contaminated with signals from adjacent muscles. Some authors report that surface EMG is not suitable for obtaining information on a single muscle but rather reflects muscle group function [J. Perry, C.S. Easterday, D.J. Antonelli, Surface versus intramuscular electrodes for electromyography of superficial and deep muscles. Physical Therapy 61 (1981) 7–15]. Other authors report however, that surface EMG is adequate to determine individual muscle function, once guidelines pertaining to data acquisition are followed [D.A. Winter, A.J. Fuglevand, S.E. Archer. Cross-talk in surface electromyography: theoretical and practical estimates. Journal of Electromyography and Kinesiology 4 (1994) 15–26]. The aim of this study was to determine whether surface EMG was suitable for monitoring rectus femoris (RF) activity during static contractions. Five healthy subjects, having given written informed consent, participated in this trial. Surface and fine wire EMG from the rectus femoris and the vastus lateralis (VL) muscles were recorded simultaneously during a protocol of static contractions consisting of knee extensions and hip flexions. Ratios were used to quantify the relationship between the surface EMG amplitude value and the fine wire EMG amplitude value for the same contraction. The results showed that hip flexion contractions elicited RF activation only and that knee extension contractions elicited fine wire activity in VL only. When the relationship between RF surface and RF fine wire electrodes was compared for hip flexion and knee extension contractions, it was observed that for all subjects, there was a tendency for increased RF surface activity in the absence of RF fine wire activity during knee extensions. It was concluded that the activity recorded by the RF surface electrode arrangement during knee extension consisted of EMG from the vastii, i.e., cross-talk and that vastus intermedius was the most likely origin of the erroneous signal. Therefore it is concluded that for accurate EMG information from RF, fine wire electrodes are necessary during a range of static contractions.  相似文献   

17.
    
The aim of this study was to evaluate the reflex pattern in patients with prior polio and to relate these findings to the degree of anterior horn cell (AHC) involvement and loss of muscle force.

Twenty-five prior polio subjects were investigated with electromyography (EMG), force testing and reflex studies, which included the patellar and Achilles reflex, H-reflex, T-response and interlimb reflex (ILR).

The clinical reflexes, H/M-ratio and T-response amplitude at rest were positively correlated with force and negatively correlated with the degree of AHC loss. The H/M-ratio was decreased compared with age matched controls.

ILR was present in 68% of the prior polio patients but did not exist in controls. The presence of the ILR was not correlated with the degree of AHC loss or force.

The reflex studies gave two main findings. The first is reduced excitability of monosynaptic connections in the motor neuron pool, which is related to weakness. The other is the presence of ILR as an indicator of interneuronal hyper-excitability, which is not related to weakness.  相似文献   


18.
许多动物类群在家域范围内迁移或长距离季节性迁徙的过程中表现出很强的方向性和规律性,它们可以整合显著的空间线索进行目的地识别、导航,并记忆栖息地内可获得的食物种类、食物斑块的分布以及食物成熟的季节等信息,并构建空间认知地图,表现出空间记忆能力。本文全面梳理了圈养实验、自然环境下的野外实验、自然状态移动轨迹的观测和分析以及数字虚拟实验环境下探索动物空间记忆研究,归纳了上述研究中研究方法的特点和适用范围,并针对未来研究趋势进行展望。多学科交叉,多场景应用以及动物空间记忆生态模型的研发已成为该领域的主要发展趋势。动物空间记忆的研究可以从新的视角深入探讨动物栖息地利用机制、移动的内在驱动因素和生物多样性的维持机制。此外,该研究领域还可为保护濒危物种、缓解人兽冲突及增加圈养动物福利等野生动物管理实践提供科学依据和参考。  相似文献   

19.
    
The first aim was to investigate the impact of different electromyography (EMG) parameters as a reference to normalize the EMG amplitude of the superficial quadriceps femoris muscles across different sets of a knee extension exercise. The second aim is to examine the reliability between days of the EMG parameters used as a reference. Eleven young males attended the laboratory on 4 different days and performed one repetition maximum test, maximumvoluntary isometric contractions, and a resistance training protocol until failure. Surface EMG was placed over the rectus femoris, vastus lateralis, and vastus medialis muscles. Seven EMG parameters were calculated from the tasks and used to normalize EMG amplitude measured during the resistance training protocol. A repeated-measures two-way ANOVA was used (normalized EMG amplitude × set) to compare normalized EMG across sets, while an intraclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to calculate the intra-day reliability of the EMG parameters. The present investigation showed that normalized EMG amplitude of the superficial muscles of the quadriceps measured during a knee extension exercise is influenced by the EMG parameter and depends on the muscle. While rectus femoris and vastus lateralis normalized EMG amplitude presented one parameter among seven showing similar value to the other parameters, VM showed two. Lastly, all EMG parameters for all muscles presented an overall excellent reliability and agreement between days.  相似文献   

20.
    
Electromyography (EMG) is a technique for recording biomedical electrical signals obtained from the neuromuscular activities. These signals are used to monitor medical abnormalities and activation levels, and also to analyze the biomechanics of any animal movements. In this article, we provide a short review of EMG signal acquisition and processing techniques. The average efficiency of capture of EMG signals with current technologies is around 70%. Once the signal is captured, signal processing algorithms then determine the recognition accuracy, with which signals are decoded for their corresponding purpose (e.g., moving robotic arm, speech recognition, gait analysis). The recognition accuracy can go as high as 99.8%. The accuracy with which the EMG signal is decoded has already crossed 99%, and with improvements in deep learning technology, there is a large scope for improvement in the design hardware that can efficiently capture EMG signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号