首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing interest in the analysis of annual growth rings in the secondary root xylem of perennial forbs (herb-chronology). Therefore, we need to verify whether these growth rings are always formed annually. To investigate the formation of root rings we performed common garden experiments at two distinct sites in Switzerland. We grew nine unrelated forb species from seed and subjected them to competition and clipping treatments. Anatomical developments in the roots of the individuals were tracked during five growing seasons. Across all species and treatments at least 94 % of the expected growth rings associated with full growing seasons were identifiable and the development of the anatomical patterns was consistently seasonal. While the distinctness of annual rings varied somewhat between species and sites, the treatments had no effect on the presence of annual rings. In no case were false rings developed. The results of this study demonstrate that the growth rings in the roots of northern temperate forbs represent robust annual growth increments and, hence, can reliably be used in herb-chronological studies of age- and growth-related questions in plant ecology.  相似文献   

2.
Annual growth rings of roots in perennial forbs have been used in studies of climate change and the ecology of grasslands. However, little has been done in this aspect of research in China. In this study, we report the characteristics of growth rings in the main roots of 13 herb species sampled in Duolun of the Inner Mongolia grassland in northern China. The results show that around two thirds of the species possess clearly demarcated annual rings in the root xylem. Some species of the same genera show different patterns in anatomical structure of the root xylem. Standardized annual ring widths of three species, Potentilla anserine L., Cymbaria dahurica L. and Lespedeza daurica (Laxm.) Schindh, show a common linear trend, indicating a continued favorable growth condition in the sampling sites. Our results provide evidence that growth rings in roots of some perennial forbs in the Inner Mongolia grassland can serve as a new and useful indicator of past changes in the grassland environment.  相似文献   

3.
Thirty-five herbaceous dicotyledonous perennial plant species,with permanent root systems, from 16 families, were examinedfor the presence of growth rings in the secondary root xylem.Most of the species surveyed showed ring zonations in the roots,and these could be verified as annual growth rings in the tenspecies for which plants of known age were available. The potentialvalue of ‘herbchronology’ as a tool in ecologicalinvestigations of species and stands of perennial herbs of temperatezones is discussed. Annual rings; age-determination; dendroecology; herbaceous perennials; anatomical patterns; secondary root xylem  相似文献   

4.
Question: Is there a pattern in growth of annual rings in roots of perennial forbs in relation to climate and climate extremes in grassland ecosystems? Location: Semi‐arid grassland in Duolun (42°27′N, 116°41′E, 1380 m a.s.l.), central Inner Mongolia, China. Methods: Main roots of three perennial species, Potentilla anserina L., Cymbaria dahurica L. and Lespedeza daurica Schindl., were sampled. Cross‐sections (10–15‐μm thick) were produced from the proximal end of sampled roots using a sledge microtome. Annual growth rings in the main roots were identified and measured by differentiating between earlywood and latewood in the secondary xylem. Relationships between annual growth rings and monthly mean temperature and total monthly precipitation were identified using correlation analysis. Differences in an annual ring width to the previous and following years were examined by calculating a distinctness score. Results: The three perennial forbs showed clearly demarcated annual growth rings in all individuals and the same fluctuation patterns. Their ring widths were generally positively correlated with precipitation from April to October (except for August) and with temperature from February to June (except June for L. daurica), September to October, and the annual mean. Strong deviations of annual ring widths from their neighbour rings were observed in 1998 and 2000. The trend of absolute distinctness scores (Dm) increased significantly from 1988 to 2003, indicating an increase in the frequency of annual ring width variation. Conclusions: Annual growth rings in the main roots of three perennial forb species can be used as an indicator of the influence of climate on below‐ground grassland growth. The change in below‐ground conditions and effects on the functioning of grassland should receive more attention in future studies.  相似文献   

5.
Recent studies have demonstrated that growth rings are widespread in the roots of forbs, and there is evidence that the rings are formed annually. However, the annual nature and development of the growth rings has not yet been examined in comparative experimental studies. In this study growth rings were analysed in the main roots of four alpine forbs (Lotus alpinus, Trifolium thalii, Silene willdenowii and Potentilla aurea) that were grown in an alpine restoration experiment for 6 years. All individuals of L. alpinus and T. thalii, and some individuals of S. willdenowii showed six clearly demarcated growth rings, demonstrating that the rings were formed annually. P. aurea did not show distinguishable growth rings. In L. alpinus and T. thalii there were fluctuations in growth ring width that were consistent between individuals and also between species, and matched variations in climatic growth conditions. Results of the present study indicate that conclusions drawn from previous studies suggesting that growth rings in the roots of forb species are most likely formed annually are also valid for alpine plants. In terms of annual ring width patterns, this study also provides the first strong evidence for consistent responses of different forb species and individuals to commonly experienced variations in habitat conditions.  相似文献   

6.
Symbiotic associations between plants and arbuscular mycorrhizal fungi are ubiquitous and ecologically important in many grasslands. Differences in species responses to mycorrhizal colonization can have a significant influence on plant community structure. The growth responses of 36 species of warm- and cool-season tallgrass prairie grasses and 59 tallgrass prairie forbs to arbuscular mycorrhizal (AM) fungal colonization were assessed in greenhouse studies to examine the extent of interspecific variation in host-plant benefit from the symbiosis and patterns of mycorrhizal dependence among host plant life history (e.g., annual, perennial) and taxonomic (e.g., grass, forb, legume, nonlegume) groups and phenological guilds. There was a strong and significant relationship between phenology of prairie grasses and mycorrhizal responsiveness, however this relationship was less apparent in forbs. Perennial warm-season C(4) grasses and forbs generally benefited significantly from the mycorrhizal symbiosis, whereas biomass production of the cool-season C(3) grasses was not affected. The root systems of the cool-season grasses were also less highly colonized by the AM fungi, as compared to the warm-season grasses or forbs. Unlike the native perennials, annuals were generally not responsive to mycorrhizal colonization and were lower in percentage root colonization than the perennial species. Plant growth responsiveness and AM root colonization were positively correlated for the nonleguminous species, with this relationship being strongest for the cool-season grasses. In contrast, root colonization of prairie legumes showed a significant, but negative, relationship to mycorrhizal growth responsiveness.  相似文献   

7.
For 76 annual, biennial, and perennial species common in the grasslands of central Minnesota, USA, we determined the patterns of correlations among seven organ-level traits (specific leaf area, leaf thickness, leaf tissue density, leaf angle, specific root length, average fine root diameter, and fine root tissue density) and their relationships with two traits relating to growth form (whether species existed for part of the growing season in basal, non-caulescent form and whether species were rhizomatous or not). The first correlation of traits showed that grasses had thin, dense leaves and thin roots while forbs had thick, low-density leaves and thick roots without any significant differences in growth form or life history. The second correlation of traits showed a gradient of species from those with high-density roots and high-density erect leaves to species with low-density roots and low-density leaves that were held parallel to the ground. High tissue density species were more likely to exist as a basal rosette for part of the season, were less likely to be rhizomatous, and less likely to be annuals. We examined the relationships between the two axes that represent the correlations of traits and previously collected data on the relative abundance of species across gradients of nitrogen addition and disturbance. Grasses were generally more abundant than forbs and the relative abundance of grasses and forbs did not change with increasing nitrogen addition or soil disturbance. High tissue density species became less common as fertility and disturbance increased.  相似文献   

8.
This study investigated the relationships between root structure and anatomy and whole-plant functioning in herbaceous species. Fourteen annual and perennial species representative of a Mediterranean old-field succession were grown in monocultures in a common-garden experiment. Whole-plant functioning was assessed by inherent relative growth rate (RGR(max)), measured in standardized conditions, and maximum height (H(max)). Root tissue density (TMD(r)), considered as a major component of root structure, was measured on roots harvested within in-growth cores. Anatomical characteristics were analysed on cross-sectional areas (CSA). TMD(r) was correlated positively with H(max) and negatively with RGR(max). Root CSA explained interspecific variation in H(max) but not that in TMD(r) and RGR(max). Root xylem CSA and xylem proportion in root CSA were positively correlated with TMD(r) and H(max) and negatively with RGR(max). Mean xylem vessel CSA did not account for variations in TMD(r), H(max) and RGR(max). These results suggested that RGR(max) and H(max) are constrained by opposite root structural and anatomical traits, which have potential links with hydraulic conductance, support and longevity.  相似文献   

9.
The root parasite Rhinanthus minor feeds on the xylem of a diverse range of species. Grasses and legumes are the best hosts, while on forbs R. minor typically shows poorer growth. It has been hypothesized that host quality is linked to the expression of defences against the parasite seen in forb roots, but never in grasses. The efficacy of these defence mechanisms in preventing resource loss has not, however, been measured directly. Here we combine histological characterization of haustoria formed on Cynosurus cristatus (a grass), Leucanthemum vulgare and Plantago lanceolata (forbs) with (15)N tracers supplied to the host to quantify the efficacy of these defence responses. Rhinanthus minor penetrated only the xylem of C. cristatus, abstracting an average of 17% of the (15)N tracer taken up, but only 2.5 and 0.2%, respectively, when attached to L. vulgare and P. lanceolata. For the first time, this study has established that the resistance mechanisms of the forbs are effective in preventing the parasite from directly accessing their xylem solutes.  相似文献   

10.
桔梗根的发育解剖学研究   总被引:1,自引:0,他引:1  
以桔梗(Platycodon grandiflorum A.DC)根为材料,运用石蜡切片和半薄切片法对其根的发育过程及结构进行解剖学观察,并对不同年限根的结构进行了比较。结果表明:桔梗根的结构发育过程包括原生分生组织、初生分生组织、初生生长和次生生长4个阶段。其原生分生组织由3群原始细胞组成,表现出典型分生组织的细胞学特征;初生分生组织包括根冠原、表皮原、皮层原和中柱原;初生结构由表皮、皮层和中柱组成,其中皮层薄壁细胞占主要地位,初生木质部为二原型;次生生长主要依靠维管形成层和木栓形成层的活动来完成,其次生结构从外到内由周皮和次生维管组织组成,次生维管组织占主导地位,其中以薄壁细胞为主,维管分子少量,分散在薄壁组织中。不同年限的根的结构基本相同,但它们在主根长度和直径、周皮厚度、木质部与韧皮部面积之比等方面存在差异。  相似文献   

11.
Here, we tested hypothesized relationships among leaf and fine root traits of grass, forb, legume, and woody plant species of a savannah community. CO2 exchange rates, structural traits, chemistry, and longevity were measured in tissues of 39 species grown in long-term monocultures. Across species, respiration rates of leaves and fine roots exhibited a common regression relationship with tissue nitrogen (N) concentration, although legumes had lower rates at comparable N concentrations. Respiration rates and N concentration declined with increasing longevity of leaves and roots. Species rankings of leaf and fine-root N and longevity were correlated, but not specific leaf area and specific root length. The C3 and C4 grasses had lower N concentrations than forbs and legumes, but higher photosynthesis rates across a similar range of leaf N. Despite contrasting photosynthetic pathways and N2-fixing ability among these species, concordance in above- and below-ground traits was evident in comparable rankings in leaf and root longevity, N and respiration rates, which is evidence of a common leaf and root trait syndrome linking traits to effects on plant and ecosystem processes.  相似文献   

12.
An understanding of the patterns of spread of invasive plant species requires analysis of the major dispersal mechanisms and of the patch structure of suitable habitats, both of which may be scale-dependent. On a larger scale, information from herbarium or literature records has proved useful for the reconstruction of past spread of invasive plants. The objective of this study is to investigate population development of invasive forbs at the scale of a site or stand (the population scale) by using herb-chronology. The feasibility of this approach has been largely disregarded until now because of the perceived difficulties in determining the age of perennial herbs. However, recent findings suggest that most of the dicotyledonous perennial herbs in the seasonal climates develop annual rings in the roots or subterraneous stems and thus demonstrate a high potential of the method in studies on plant invasions that went almost unnoticed. The spatial position and age (by means of analysis of annual rings) of individual plants were determined in invasion patches of five species of perennial forbs in Germany and in the USA. The data thus obtained revealed different spatio-temporal patterns of population development that are consistent with distinct models of (local) plant spread, including diffuse invasion and front-like invasion patterns, and thus suggest different processes at work in the course of invasion. The results suggest that analysis of spatial age structures is useful (i) to estimate rates of patch expansion, (ii) to distinguish between dispersal- and microsite-limited population development, (iii) to evaluate how different site conditions affect population development, and (iv) to help understand metapopulation dynamics.  相似文献   

13.
幼龄柠条细根现存量与环境因子的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
以晋西北黄土高原区柠条(Caragana korshinskii)幼龄人工林为研究对象, 应用微根管技术(Minirhizotron technique)对林地100 cm土层范围的柠条细根生长动态进行了观测。以2007年生长季(5~9月)的根长密度(RLD, mm·cm-3)数据为基础, 对柠条细根现存量(RLDst, mm·cm-3)及其与环境因子(≥10 ℃积温、同期土壤积温、积降雨量和土壤水分等)的关系作了研究。结果表明, 40~90 cm土层是柠条细根的主要分布区和生长活跃区, 其细根占细根总量的59.7%。柠条细根现存量的季节变化特征为: 5月至9月上旬RLDst持续增加, 9月下旬RLDst略有降低。柠条细根现存量季节变化与≥10 ℃积温、同期土壤积温和积降雨量均存在极显著正相关关系。  相似文献   

14.
Thymus mongolicus steppe was a vegetation formation dominated by typical dwarf semi-shrub of Lamiaceae. Based on the previous literatures and primary plot data sampled during the growing seasons from 2015 to 2017, the distribution, ecological features, community characteristics and classification of Thymus mongolicus steppe were summarized. (1) Thymus mongolicus steppe is mainly distributed on the loess hills of Xar Moron River Watershed, Bashang region in the northwest of Hebei Province, the hills surrounding the Yinshan Mountains, the east part of Erdos Plateau and the northern Loess Plateau. This formation occurrs mainly on the stony slopes or loess hills with severe soil erosion. (2) In total, 167 seed plant species belonging to 101 genera of 34 families were recorded in the 91 sample sites, and families of Compositae, Leguminosae and Gramineae played crucial roles in the species composition. Eight of these families were semi-shrub and dwarf semi-shrub species, and 112 were perennial forb species. Typical xerophytes (58 species) and Meso-xerophytes (45 species) account for more than half part of all species. Eight geographic elements were involved. East Palaearctic (70 species) and East Asia (46 species) were the two major floristic elements. (3) Based on life form and dominance of species in the community, the formation was classified into 6 association groups (Thymus mongolicus, dwarf shrubs/dwarf semi-shurbs association group; Thymus mongolicus association group; Thymus mongolicus, bunchgrasses association group; Thymus mongolicus, rhizomatous grasses association group; Thymus mongolicus, Carex association group; Thymus mongolicus, forbs association group), consisting of 28 associations. © Chinese Journal of Plant Ecology.  相似文献   

15.
郑丽  蔡霞  胡正海 《植物研究》2009,29(6):659-664
应用常规石蜡切片法对狭叶柴胡(Bupleurum scorzonerifolium Willd.)根的发育过程进行了解剖学研究,并对其1年生与多年生根的结构进行了比较。结果表明,狭叶柴胡根的发育包括原分生组织、初生分生组织、初生结构和次生生长4个发育阶段。原分生组织由3群原始细胞组成,其细胞具有典型分生组织的细胞学特征;初生分生组织包括根冠原、表皮原、皮层原和中柱原。初生结构由表皮、皮层和中柱组成。初生木质部多为二原型,少数为三原型。次生结构为:从外到内由周皮、中柱鞘薄壁细胞环和次生维管组织组成,次生生长主要是依靠维管形成层和木栓形成层的活动来完成,其木栓形成层由中柱鞘细胞恢复分裂能力而形成。多年生根与一年生根的结构基本相似,但在各部分的细胞数量和组成上存在差异。分泌道在一年生的根中仅分布在中柱鞘薄壁组织中,而在多年生的根中,在中柱鞘薄壁细胞和次生韧皮部中均有分布。  相似文献   

16.
Grime's (1998) "mass-ratio" hypothesis holds that ecosystem processes depend in the short term on functional properties of dominant plants and in the longer term on how resident species influence the recruitment of dominants. The latter of these effects may be especially important among early-successional species in disturbed ecosystems, but experimental tests are few. We removed two groups of early-successional species, an annual forb Gutierrezia dracunculoides (DC.) S. F. Blake and annual species (mostly grasses) that complete growth early in the growing season [early-season (ES) species], from a heavily-grazed grassland in central Texas, USA dominated by a C4 perennial grass. We sought to determine effects of annuals on grassland functioning [productivity, water balance, soil and plant nitrogen (N)] and composition. Removals did not impact N retention in the soil/plant system during the two years of this study, but removing ES annuals increased the amount of water between 30 and 120 cm in the soil profile early in each growing season. Production and N accumulation by vegetation declined following the removal of ES annuals in approximate proportion to the contribution of annuals to aboveground biomass and N, consistent with the mass-ratio hypothesis. By the second year, production and N uptake by initially sub-dominant species increased to fully compensate for the loss of annuals. These results are consistent with the view that ecosystem functions are more strongly linked to species attributes than to diversity per se. Longer-term effects of annuals on grassland composition were evident in a dramatic increase in biomass of perennial forbs after annuals were removed. Because perennial forbs differ from the dominant grass in this grassland in traits that influence ecosystem functioning, ES annuals may affect grassland functioning more by regulating the composition of vegetation than by directly affecting process rates.  相似文献   

17.
Summary Tundra plant growth forms can generally be characterized as consisting predominantly of low-growing perennial grasses and sedges, perennial herbaceous forbs, dwarf deciduous shrubs, and dwarf evergreen shrubs. Gross aboveground carbon allocation, leaf growth, and photosynthesis pattern studies were initiated to develop a quantitative understanding of the functional importance of these particular tundra growth forms. Photosynthetic capacities of 13 species were determined under standardized exposure conditions using a14CO2 field system and ranged between 5 and 47 mg CO2·g dry wt-1·h-1. These results, in conjunction with detailed leaf growth determinations, support the generalization that species with an evergreen growth form have lower photosynthetic capacities than species with a perennial graminoid, forb, or deciduous shrub growth form. However, these low photosynthetic capacities in evergreen shrubs are associated with relatively extended leaf longevities. Conversely, deciduous shrub forms exhibited high photosynthetic capacities, but were offset by relatively short leaf longevity periods. The perennial grasses, sedges, and forbs showed patterns intermediate to these. As a result, it appears that among tundra species of different growth form, photosynthetic capacity is inversely related to leaf longevity.  相似文献   

18.
疏叶骆驼刺根系对土壤异质性和种间竞争的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来, 植物根系对土壤异质性的响应和植物根系之间的相互作用一直是研究的热点。过去的研究主要是针对一年生短命植物进行的, 而且多是在人工控制的温室条件下进行的。而对于多年生植物根系对养分异质性和竞争的综合作用研究很少。该文对塔里木盆地南缘多年生植物疏叶骆驼刺(Alhagi sparsifolia)根系生长对养分异质性和竞争条件的响应途径与适应策略进行了研究, 结果表明: (1)在无竞争的条件下, 疏叶骆驼刺根系优先向空间大的地方生长, 即使另一侧有养分斑块存在, 其根系也向着空间大的一侧生长; (2)在有竞争的条件下, 疏叶骆驼刺根系生长依然是优先占领空间大的一侧, 但是竞争者的存在抑制了疏叶骆驼刺的生长, 导致其枝叶生物量和根系生物量都明显减少(p < 0.01), 而养分斑块的存在促进了疏叶骆驼刺根系的生长; (3)疏叶骆驼刺根系的生长不仅需要养分, 也需要足够的空间, 空间比养分更重要; (4)有竞争者存在的时候, 两株植物的根系都先长向靠近竞争者一侧的空间, 即先占据“共有空间”。研究结果对理解植物根系觅食行为和植物对环境的适应策略有重要意义。  相似文献   

19.
草地是陆地生态系统的重要组成部分,根系生物量是研究草地生态系统的重要参数之一,研究草地根系生物量沿环境梯度的变化规律对当地的植被建设和恢复具有重要意义。以黄土高原3种不同草地类型(森林草原、典型草原和荒漠草原)为研究对象,沿环境梯度从东到西选择10个样地,每个样地内设置8个1 m×1 m样方进行根系生物量的调查,旨在分析不同草地类型根系生物量的垂直分布规律,并探讨了根系生物量沿环境梯度的变化规律及其影响因素。结果表明:(1)黄土高原3种草地类型根系生物量有显著差别(P<0.05),其中森林草原的根系生物量最大,典型草原最小;(2)3种不同草地类型根系生物量垂直分布均呈"T"型,土壤表层(0-10 cm)占55%以上的根系生物量,且荒漠草原根系有更多比例的生物量分布在土壤表层;(3)黄土高原草地根系生物量沿经度从东到西呈现先减少后缓慢增加的趋势,但浅层生物量与深层生物量比例(浅深比)没有表现出明显的经度格局;(4)总根系生物量的变化主要受年均温(MAT)影响(P<0.01),随MAT增大而增大;深层生物量同时受气候和土壤养分含量的影响(P<0.01);浅深比则与样点平均土壤全磷含量、深层土壤全磷含量有显著负相关性(P<0.05);(5)气候和土壤因素能解释根系生物量5.12%-39.36%的变异,独立作用中,气候因子对根生物量的解释度最大,可达到2.77%-9.12%的解释度。  相似文献   

20.
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (⩾5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%±2% S.E.) were distinct from those at the alpine (23%±6%) and subnival (21%±6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号