首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Athletes with rotator cuff (RC) tendinopathy demonstrate an aberrant pattern of scapular motion which might relate to deficits in the scapular muscles. This study aimed to determine whether alteration in scapular kinematics is associated with deficits in the activity onset of scapular muscles. Forty-three male volleyball players (17 asymptomatic and 26 with RC tendinopathy) joined the study. Three-dimensional scapular kinematics was quantified using an acromial marker cluster method. The activity onset of the upper (UT), middle (MT), and lower trapezius (LT), and serratus anterior (SA) during arm abduction was assessed with electromyography. Athletes with RC tendinopathy demonstrated less scapular upward rotation (6.6 ± 2.3 vs. 8.2 ± 1.1°, p = 0.021) in the early phase of shoulder abduction from 0° to 30° when compared to asymptomatic athletes. The tendinopathy group had delayed activity onset of LT (14.1 ± 31.4 ms vs. 74.4 ± 45.1 ms, p < 0.001) and SA (−44.9 ± 26.0 ms vs. 23.0 ± 25.2 ms, p < 0.001) relative to UT when compared to the asymptomatic group. In asymptomatic athletes, earlier activity onset of MT and LT relative to UT was associated with more scapular upward rotation during 0–30° of abduction (r = 0.665, p = 0.021) and 30–60° of abduction (r = 0.680, p = 0.015), respectively. Our findings showed the control of the scapular upward rotation is related to the activity onset of the scapular muscles in athletes.  相似文献   

2.
The first aim of this investigation was to quantify the distribution of trapezius muscle activity with different scapular postures while seated. The second aim of this investigation was to examine the association between changes in cervical and scapular posture when attempting to recruit different subdivisions of the trapezius muscle. Cervical posture, scapular posture, and trapezius muscle activity were recorded from 20 healthy participants during three directed shoulder postures. Planar angles formed by reflective markers placed on the acromion process, C7, and tragus were used to quantify cervical and scapular posture. Distribution of trapezius muscle activity was recorded using two high-density surface electromyography (HDsEMG) electrodes positioned over the upper, middle, and lower trapezius. Results validated the assumption that directed scapular postures preferentially activate different subdivisions of the trapezius muscle. In particular, scapular depression was associated with a more inferior location of trapezius muscle activity (r = 0.53). Scapular elevation was coupled with scapular abduction (r = 0.52). Scapular adduction was coupled with cervical extension (r = 0.35); all other changes in cervical posture were independent of changes in scapular posture. This investigation provides empirical support for reductions in static loading of the upper trapezius and improvements in neck posture through verbal cueing of scapular posture.  相似文献   

3.
ObjectivesThe function of the scapula is important in normal neck function and might be disturbed in patients with neck pain. The surrounding muscular system is important for the function of the scapula. To date, it is not clear if patients with idiopathic neck pain show altered activity of these scapulothoracic muscles. Therefore, the objective of this study was to investigate differences in deeper and superficial lying scapulothoracic muscle activity between patients with idiopathic neck pain and healthy controls during arm elevation, and to identify the influence of scapular dyskinesis on muscle activity.MethodsScapular dyskinesis was rated with the yes/no method. The deeper lying (Levator Scapulae, Pectoralis Minor (Pm) and Rhomboid major) and superficial lying (Trapezius and Serratus Anterior) scapulothoracic muscles’ activity was investigated with fine-wire and surface EMG, respectively, in 19 female subjects with idiopathic neck pain (age 28.3 ± 10.1 years, average duration of neck pain 45.6 ± 36.3 months) and 19 female healthy control subjects (age 29.3 ± 11.7 years) while performing scaption and towel wall slide. Possible interactions or differences between subject groups, scapular dyskinesis groups or phases of the task were studied with a linear mixed model.ResultsHigher Pm activity during the towel wallslide (p = 0.024, mean difference 8.8 ± 3.3% MVIC) was shown in patients with idiopathic neck pain in comparison with healthy controls. For the MT, a significant group 1 dyskinesis interaction effect was found during scaption which revealed that patients with neck pain and scapular dyskinesis showed lower Middle Trapezius (MT) activity in comparison with healthy controls with scapular dyskinesis (p = 0.029, mean difference 5.1 ± 2.2% MVIC).ConclusionsIn the presence of idiopathic neck pain, higher Pm activity during the towel wallslide was found. Patients with neck pain and scapular dyskinesis showed lower MT activity in comparison with healthy controls with scapular dyskinesis during scaption. Scapular dyskinesis did not have a significant influence on scapulothoracic muscle activity.  相似文献   

4.
The shoulder is complex and comprised of many moving parts. Accurately measuring shoulder rhythm is difficult. To classify shoulder rhythm and identify pathological movement, static measures have been the preferred method. However, dynamic measures are also used and can be less burdensome to obtain. The purpose of this paper was to determine how closely dynamic measures represent static measures using the same acromion marker cluster scapular tracking technique. Five shoulder angles were assessed for 24 participants using dynamic and static tracking techniques during humeral elevation in three planes (frontal, scapular, sagittal). ANOVAs were used to identify where significant differences existed for the factors of plane, elevation angle, and tracking technique (static, dynamic raising, dynamic lowering). All factors were significantly different for all shoulder angles (p < 0.001), except for elevation plane in scapulothoracic protraction/retraction (p = 0.955). Tracking techniques were influential (p < 0.001), but the grouped mean differences fell below a clinically relevant 5° benchmark. There was large variation in mean differences of the techniques across individuals. While population averages are similar, individual static and dynamic shoulder assessments may be different. Caution should be taken when dynamic shoulder assessments are performed on individuals, as they may not reflect those obtained in static scapular motion tracking.  相似文献   

5.
Background: Plyometric shoulder exercises are commonly used to progress from slow analytical strength training to more demanding high speed power training in the return to play phase after shoulder injury. The aim of this study was first, to investigate scapular muscle activity in plyometric exercises to support exercise selection in practice and second, to enhance understanding of how scapular muscles are recruited during the back and forth movement phase of these exercises. Methods: Thirty-two healthy subjects performed 10 plyometric exercises while surface EMG-activity of the scapular muscles (upper (UT), middle (MT) and lower trapezius (LT) and serratus anterior (SA)) was registered. A high speed camera tracked start and end of the back and forth movement. Results: Mean scapular EMG activity during the 10 exercises ranged from 14.50% to 76.26%MVC for UT, from 15.19% to 96.55%MVC for MT, from 13.18% to 94.35%MVC for LT and from 13.50% to 98.50%MVC for SA. Anova for repeated measures showed significant differences in scapular muscle activity between exercises (p < 0.001) and between the back and forth movement (p < 0.001) within exercises. Conclusion: Plyometric shoulder exercises require moderate (31–60%MVC) to high (>60%MVC) scapular muscle activity. Highest MT/LT activity was present in prone plyometric external rotation and flexion. Highest SA activity was found in plyometric external rotation and flexion with Xco and plyometric push up on Bosu. Specific exercises can be selected that recruit minimal levels of UT activity (<15%): side lying plyometric external rotation and horizontal abduction or plyometric push up on the Bosu. The results of this study support exercise selection for clinical practice.  相似文献   

6.
An analysis of secondary shoulder motions (humeral rotation, humeral head anterior/posterior translation, scapular tipping, and scapular upward/downward rotation) in subjects with anterior/posterior shoulder tightness provides the opportunity to examine the role of tightness as a means of affecting shoulder motions. Subjects with shoulder tightness (anterior, n = 12; posterior, n = 12) elevated their arms in the scapular plane. Three replicated movements were performed to the maximum motions. Kinematics data were collected by FASTRAK 3D electromagnetic system. To determine if a significant difference of the secondary motions existed between anterior/posterior shoulder tightness, two-factor mixed ANOVA models with the repeated factor of elevation angle (five elevation angles) and the independent factor of group were calculated. The relationships between the self-reported functional scores (Flexilevel Scale of Shoulder Function, FLEX-SF) and abnormal shoulder kinematics were assessed. For humeral head anterior/posterior translation, the subjects with posterior tightness demonstrated anterior humeral head translation (10 mm, p = 0.019) compared to subjects with anterior tightness. The subjects with anterior tightness demonstrated less posterior tipping (2.2°, p = 0.045) compared to subjects with posterior tightness. The humeral anterior translation had moderate relationships with FLEX-SF scores (r = ?0.535) in subjects with posterior tightness. The scapular tipping had moderate relationships with FLEX-SF scores (r = 0.432) in subjects with anterior tightness. In conclusion, the secondary motions were different between subjects with anterior and posterior shoulder tightness. During arm elevation, less scapular posterior tipping and less posterior humeral head translation in subjects with anterior and posterior shoulder tightness, respectively, are significantly related to self-reported functional disability in these subjects.  相似文献   

7.
Scapular kinematics in healthy adults is well described in the literature but little is known on typical children. This study aimed to compare the three-dimensional (3-D) scapular kinematics and scapulohumeral rhythm during the elevation and lowering of the arm in the scapular plane in typical children and healthy adults. Twenty-six healthy adults (35.34 ± 11.65 years, 1.70 ± 0.10 m, 70.00 ± 12.30 kg) and 33 typical children (9.12 ± 1.51 years, 1.40 ± 0.10 m, 35.40 ± 10.45 kg) participated in this study. 3-D scapular kinematics were obtained using an electromagnetic tracking device. The subjects were asked to elevate and lower their arm in the scapular plane. Children showed less scapular protraction compared to adults at 120° during arm elevation, more anterior tilt than adults in the elevation and also at 60°, 90° and 120° during lowering of the arm. Children also showed higher scapulohumeral rhythm during lowering of the arm compared to adults from 90° to 60°. It was also found a low to little correlation between scapular position and age. The study showed small but significant differences in scapular kinematics and scapulohumeral rhythm between children and adults. These results can help clinicians to improve diagnosis and treatment protocols directed to children with dysfunction, as reference values on scapular kinematics in healthy children are also provided in this study.  相似文献   

8.
The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p = 0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p = 0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface.  相似文献   

9.
Motor control and learning possibilities of scapular muscles are of clinical interest for restoring scapular muscle balance in patients with neck and shoulder disorders. The aim of the study was to investigate whether selective voluntary activation of intra-muscular parts within the serratus anterior can be learned with electromyographical (EMG) biofeedback, and whether the lower serratus anterior and the lower trapezius muscle comprise the lower scapula rotation force couple by synergistic activation. Nine healthy males practiced selective activation of intra-muscular parts within the serratus anterior with visual EMG biofeedback, while the activity of four parts of the serratus anterior and four parts of the trapezius muscle was recorded. One subject was able to selectively activate both the upper and the lower serratus anterior respectively. Moreover, three subjects managed to selectively activate the lower serratus anterior, and two subjects learned to selectively activate the upper serratus anterior. During selective activation of the lower serratus anterior, the activity of this muscle part was 14.4 ± 10.3 times higher than the upper serratus anterior activity (P < 0.05). The corresponding ratio for selective upper serratus vs. lower serratus anterior activity was 6.4 ± 1.7 (P < 0.05). Moreover, selective activation of the lower parts of the serratus anterior evoked 7.7 ± 8.5 times higher synergistic activity of the lower trapezius compared with the upper trapezius (P < 0.05). The learning of complete selective activation of both the lower and the upper serratus anterior of one subject, and selective activation of either the upper or lower serratus anterior by five subjects designates the promising clinical application of EMG biofeedback for restoring scapular muscle balance. The synergistic activation between the lower serratus anterior and the lower trapezius muscle was observed in only a few subjects, and future studies including more subjects are required before conclusions of a lower scapula rotation couple can be drawn.  相似文献   

10.
PurposeThis study aimed to investigate the effect of elastic taping on kinematics, muscle activity and strength of the scapular region in baseball players with shoulder impingement.ScopeSeventeen baseball players with shoulder impingement were recruited from three amateur baseball teams. All subjects received both the elastic taping (Kinesio TexTM) and the placebo taping (3 M Micropore tape) over the lower trapezius muscle. We measured the 3-dimensional scapular motion, electromyographic (EMG) activities of the upper and lower trapezius, and the serratus anterior muscles during arm elevation. Strength of the lower trapezius was tested prior to and after each taping application. The results of the analyses of variance (ANOVA) with repeated measures showed that the elastic taping significantly increased the scapular posterior tilt at 30° and 60° during arm raising and increased the lower trapezius muscle activity in the 60–30° arm lowering phase (p < 0.05) in comparison to the placebo taping.ConclusionsThe elastic taping resulted in positive changes in scapular motion and muscle performance. The results supported its use as a treatment aid in managing shoulder impingement problems.  相似文献   

11.
BackgroundScapular taping is frequently used in the management of shoulder pain and as a part of injury prevention strategies in sports. It is believed to alter scapular kinematics and restore normal motion. However, there is little evidence to support its use. The aim of the study was to investigate the effect of shoulder taping on the scapular kinematics of asymptomatic subjects.MethodThirteen asymptomatic subjects performed elevations in the sagittal and scapular planes with no tape and after the application of tape. A motion tracking system and a scapula locator method were used to measure the shoulder movement. Co-ordinate frames were defined for the thorax, humerus and scapula and Euler angles were used to calculate joints rotations.ResultsScapular taping increased the scapular external and upward rotations and posterior tilt in elevations in the sagittal plane (p < 0.001). In the scapular plane, taping increased scapular external rotation (p < 0.05).ConclusionsTaping affects scapulothoracic kinematics in asymptomatic subjects. The effect may be different for different planes of movement. The findings have implications on the use of taping as a preventive measure in high-risk groups. Further work is needed to assess the effect of taping on symptomatic populations.  相似文献   

12.
The purpose of the present study was to determine (1) if joint position sense (JPS) in subjects with shoulder stiffness (SS) differs from that in controls; (2) if, when JPS is reduced in SS, it is related to scapular muscular activities in the mid/end ranges of motion; and (3) if a person’s function is associated with his or her level of JPS. Eighteen subjects with unilateral SS and 18 controls were included. Each subject performed abduction by self-selecting an end/mid range position. The electromagnetic motion-capturing system collected kinematic data while surface electromyography collected muscle activities (upper trapezius, lower trapezius, and serratus anterior muscles). Subjects were asked to move the upper limb to the target position (end/mid range) accurately without visual guidance. Reduced JPS was observed in subjects with SS (2.7 degrees in mid range, p < 0.05). The JPS was enhanced by an increased scapula muscular activation level in the end range of motion (R = ?0.61 for SS and ?0.41 for controls) and by coordination among muscles’ activation in the mid-range of motion (R = ?0.87 for SS and R = ?0.53 for controls). Impaired JPS was also related to self-reported functional status (R = ?0.56) in subjects with SS. Shoulder JPS in subjects with chronic SS is impaired in comparison with controls. In the mid-range motion, the coordination of scapula muscular activation is related to shoulder JPS. Impaired JPS is also function-related in subjects with SS. These findings suggest that the coordination among scapula muscles’ activation were important to consider in the rehabilitation of patients with chronic SS.  相似文献   

13.
PurposeThis study attempted to assess if the resisted contraction of medial rotators of the tibia increases the ratio between the activity of vastus medialis (VM) and vastus lateralis (VL) during maximal isometric contractions (MIC) of the quadriceps femoral (QF) muscle at 90° of knee flexion.MethodsAbout 24 female subjects participated in this study, performing four series MIC of the QF. In the first series subjects performed only MIC of the QF muscle, whereas in the other three there was MIC of the QF with resisted contraction of medial rotators of the tibia, with the tibia positioned in medial, neutral and lateral rotation. During each contraction, VM and VL electromyographic signal (EMGs) and QF force were collected, being the EMGs root mean square (RMS) used to access the activity level of these muscles.ResultsThe use of the General Linear Model (GLM) test showed that for α = 0.05 there was a significant increase in the VM:VL ratio when the resisted contraction of medial rotators of the tibia was performed with the tibia in medial (p = <0.0001), neutral (p = <0.0001) and lateral rotation (p = 0.001). The same test showed that during MIC of the QF associated to resisted contraction of medial rotators of the tibia there were no significant differences in the VM:VL ratio between the three tibial rotation positions adopted (p = 0.866 [medial–neutral]; p = 0.106 [medial–lateral]; p = 0.068 [neutral–lateral]).ConclusionsThe resisted contraction of medial rotators of the tibia increases the VM:VL ratio during MIC of the QF and the tibial rotation position does not influence the VM:VL ratio during MIC associated to resisted contraction of medial rotators of the tibia.  相似文献   

14.
This study compared the effects of 6-week whole-body vibration (WBV) training programs with different frequency and peak-to-peak displacement settings on knee extensor muscle strength and power. The underlying mechanisms of the expected gains were also investigated. Thirty-two physically active male subjects were randomly assigned to a high-frequency/high peak-to-peak displacement group (HH; n = 12), a low-frequency/low peak-to-peak displacement group (LL; n = 10) or a sham training group (SHAM; n = 10). Maximal voluntary isometric, concentric and eccentric torque of the knee extensors, maximal voluntary isometric torque of the knee flexors, jump performance, voluntary muscle activation, and contractile properties of the knee extensors were assessed before and after the training period. Significant improvement in knee extensor eccentric voluntary torque (P < 0.01), knee flexor isometric voluntary torque (P < 0.05), and jump performance (P < 0.05) was observed only for HH group. Regardless of the group, knee extensor muscle contractile properties (P < 0.05) were enhanced. No modification was observed for voluntary muscle activation or electrical activity of agonist and antagonist muscles. We concluded that high-frequency/high peak-to-peak displacement was the most effective vibration setting to enhance knee extensor muscle strength and jump performance during a 6-week WBV training program and that these improvements were not mediated by central neural adaptations.  相似文献   

15.
Imbalance of neuromuscular activity in the scapula stabilizers in subjects with Subacromial Impingement Syndrome (SIS) is described in restricted tasks and specific populations. Our aim was to compare the scapular muscle activity during a voluntary movement task in a general population with and without SIS (n = 16, No-SIS = 15).Surface electromyography was measured from Serratus anterior (SA) and Trapezius during bilateral arm elevation (no-load, 1 kg, 3 kg). Mean relative muscle activity was calculated for SA and the upper (UT) and lower part of trapezius (LWT), in addition to activation ratio and time to activity onset. In spite of a tendency to higher activity among SIS 0.10–0.30 between-group differences were not significant neither in ratio of muscle activation 0.80–0.98 nor time to activity onset 0.53–0.98.The hypothesized between-group differences in neuromuscular activity of Trapezius and Serratus was not confirmed. The tendency to a higher relative muscle activity in SIS could be due to a pain-related increase in co-activation or a decrease in maximal activation. The negative findings may display the variation in the specific muscle activation patterns depending on the criteria used to define the population of impingement patients, as well as the methodological procedure being used, and the shoulder movement investigated.  相似文献   

16.
While fatigue of the rotator cuff demonstrably causes superior humeral head migration and concomitant risk of impingement, the relationship between specific muscular fatigue, scapular dyskinesis and impingement risk is less clear. The purpose of this study was to examine changes in scapular orientation following a simulated prone rowing fatiguing protocol that targeted the scapula stabilizing muscles while attempting to alleviate rotator cuff muscular demands. Scapular orientation and muscle activity were collected from participants before and immediately after the fatiguing task. This task fatigued both the stabilizing (upper and middle trapezius, and latissimus dorsi) and rotator cuff (supraspinatus, and infraspinatus) muscles. The upper extremity muscle fatigue pattern caused by the protocol did not elicit any significantly changes in three-dimensional scapular position with all post-fatigue changes being ?1° (p = 0.17–0.58). These results indicated that scapular reorientation is likely not the dominant mechanism of fatigue-induced subacromial impingement development. However, the substantial variability present in the kinematics prevents complete exclusion of scapular dyskinesis as a secondary causal mechanism of impingement.  相似文献   

17.
Neuromuscular control of the scapular muscles is important in the etiology of shoulder pain. Electromyographical (EMG) biofeedback in healthy people has been shown to support a selective activation of the lower compartment of the trapezius muscle, specifically. The aim of the present paper was to investigate whether patients with Subacromial Impingement Syndrome (SIS) were able to selectively activate the individual compartments within the trapezius muscle, with and without EMG biofeedback to the same extent as healthy controls (No-SIS).Fifteen SIS and 15 No-SIS participated in the study. Sessions with and without visual biofeedback were conducted. Surface EMG was recorded from four compartments of the trapezius muscle. Selective activation was defined as activation above 12% with other muscle parts below 1.5% or activation ratio at or above 95% of the total activation. Without biofeedback significantly fewer SIS subjects than No-SIS achieved selective activation (p = 0.02–0.03).The findings of the study show that without biofeedback No-SIS had a superior scapular muscle control. However, when provided with visual EMG feedback the SIS group performed equally well as the No-SIS group. This indicated that individuals with SIS may benefit from biofeedback training to gain control of the neuromuscular function of the scapular muscle.  相似文献   

18.
Purpose: Clavicular shortening after fracture is deemed prognostic for clinical outcome and is therefore generally assessed on radiographs. It is used for clinical decision making regarding operative or non-operative treatment in the first 2 weeks after trauma, although the reliability and accuracy of the measurements are unclear. This study aimed to assess the reliability of roentgen photogrammetry (2D) of clavicular length and shortening, and to compare these with 3D-spatial digitization measurements, obtained with an electromagnetic recording system (Flock of Birds). Patients and methods: Thirty-two participants with a consolidated non-operatively treated two or multi-fragmented dislocated midshaft clavicular fracture were analysed. Two observers measured clavicular lengths and absolute and proportional clavicular shortening on radiographs taken before and after fracture consolidation. The clavicular lengths were also measured with spatial digitization. Inter-observer agreement on the radiographic measurements was assessed using the Intraclass Correlation Coefficient (ICC). Agreement between the radiographic and spatial digitization measurements was assessed using a Bland–Altman plot. Results: The inter-observer agreement on clavicular length, and absolute and proportional shortening on trauma radiographs was almost perfect (ICC > 0.90), but moderate for absolute shortening after consolidation (ICC = 0.45). The Bland–Altman plot compared measurements of length on AP panorama radiographs with spatial digitization and showed that planar roentgen photogrammetry resulted in up to 37 mm longer and 34 mm shorter measurements than spatial digitization. Conclusion: Measurements of clavicular length on radiographs are highly reliable between observers, but may not reflect the actual length and shortening of the clavicle when compared to length measurements with spatial digitization. We recommend to use proportional shortening when measuring clavicular length or shortening on radiographs for clinical decision making.  相似文献   

19.
The antioxidant activity for a series of chromone compounds, evaluated by DPPH free radical scavenging assay, were subjected to 3D-QSAR studies using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). All 48 chromone derivatives were geometry optimized by AM1 and HF/6-31G* calculations. The CoMFA and CoMSIA results were compared between different alignment strategies. The best CoMFA model obtained from HF/6-31G* optimization with field fit alignment gave cross-validated r2 (q2) = 0.821, noncross-validated r2 = 0.987, S = 0.095, and F = 388.255. The best CoMSIA model derived from AM1 optimized structures and superimposition alignment gave q2 = 0.876, noncross-validated r2 = 0.976, S = 0.129, and F = 208.073, including electrostatic, hydrophobic, hydrogen bond donor and acceptor fields. The contour maps provide the fruitful structure–radical scavenging activity relationships which are useful for designing new compounds with higher activity.  相似文献   

20.
Previous studies show that the scapular muscle recruitment order could possibly change according to the characteristics of the postural task. We aimed to compare the activation latencies of serratus anterior (SA), upper, middle, and lower trapezius (UT, MT and LT, respectively) between an unpredictable perturbation (sudden arm destabilization) and a predictable task (voluntary arm raise) and, to determine the differences in the muscle recruitment order in each task. The electromyographic signals of 23 participants were recorded while the tasks were performed. All scapular muscles showed earlier onset latency in the voluntary arm raise than in the sudden arm destabilization. No significant differences were observed in the muscle recruitment order for the sudden arm destabilization (p > 0.05). Conversely, for voluntary arm raise the MT, LT SA and anterior deltoid (AD) were activated significantly earlier than the UT (p < 0.001). Scapular muscles present a specific recruitment order during a predictable task: SA was activated prior to the AD and the UT after the AD, in a recruitment order of SA, AD, UT, MT, and LT. While in an unpredictable motor task, all muscles were activated after the destabilization without a specific recruitment order, but rather a simultaneous activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号