首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chemical graph generators are software packages to generate computer representations of chemical structures adhering to certain boundary conditions. Their development is a research topic of cheminformatics. Chemical graph generators are used in areas such as virtual library generation in drug design, in molecular design with specified properties, called inverse QSAR/QSPR, as well as in organic synthesis design, retrosynthesis or in systems for computer-assisted structure elucidation (CASE). CASE systems again have regained interest for the structure elucidation of unknowns in computational metabolomics, a current area of computational biology.  相似文献   

2.
3.
4.
Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker''s ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.  相似文献   

5.
6.
Supervised machine learning is an essential but difficult to use approach in biomedical data analysis. The Galaxy-ML toolkit (https://galaxyproject.org/community/machine-learning/) makes supervised machine learning more accessible to biomedical scientists by enabling them to perform end-to-end reproducible machine learning analyses at large scale using only a web browser. Galaxy-ML extends Galaxy (https://galaxyproject.org), a biomedical computational workbench used by tens of thousands of scientists across the world, with a suite of tools for all aspects of supervised machine learning.

This is a PLOS Computational Biology Software paper.
  相似文献   

7.
The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta''s FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5′ UTR; the reverse complement of the 5′ UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3′ UTR. For eleven of these elements (the stems in SL1–8, reverse complement of SL1–4, FSE, s2m and 3′ UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets (‘FARFAR2-SARS-CoV-2’, https://github.com/DasLab/FARFAR2-SARS-CoV-2; and ‘FARFAR2-Apo-Riboswitch’, at https://github.com/DasLab/FARFAR2-Apo-Riboswitch’) include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules.  相似文献   

8.
Practical identifiability of Systems Biology models has received a lot of attention in recent scientific research. It addresses the crucial question for models’ predictability: how accurately can the models’ parameters be recovered from available experimental data. The methods based on profile likelihood are among the most reliable methods of practical identification. However, these methods are often computationally demanding or lead to inaccurate estimations of parameters’ confidence intervals. Development of methods, which can accurately produce parameters’ confidence intervals in reasonable computational time, is of utmost importance for Systems Biology and QSP modeling.We propose an algorithm Confidence Intervals by Constraint Optimization (CICO) based on profile likelihood, designed to speed-up confidence intervals estimation and reduce computational cost. The numerical implementation of the algorithm includes settings to control the accuracy of confidence intervals estimates. The algorithm was tested on a number of Systems Biology models, including Taxol treatment model and STAT5 Dimerization model, discussed in the current article.The CICO algorithm is implemented in a software package freely available in Julia (https://github.com/insysbio/LikelihoodProfiler.jl) and Python (https://github.com/insysbio/LikelihoodProfiler.py).  相似文献   

9.
10.
As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here, we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.  相似文献   

11.
Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools–Lumpy, Delly and SoftSearch–and demonstrate Wham’s ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.
This is PLOS Computational Biology software paper.
  相似文献   

12.
Analyzing the dynamical properties of mobile objects requires to extract trajectories from recordings, which is often done by tracking movies. We compiled a database of two-dimensional movies for very different biological and physical systems spanning a wide range of length scales and developed a general-purpose, optimized, open-source, cross-platform, easy to install and use, self-updating software called FastTrack. It can handle a changing number of deformable objects in a region of interest, and is particularly suitable for animal and cell tracking in two-dimensions. Furthermore, we introduce the probability of incursions as a new measure of a movie’s trackability that doesn’t require the knowledge of ground truth trajectories, since it is resilient to small amounts of errors and can be computed on the basis of an ad hoc tracking. We also leveraged the versatility and speed of FastTrack to implement an iterative algorithm determining a set of nearly-optimized tracking parameters—yet further reducing the amount of human intervention—and demonstrate that FastTrack can be used to explore the space of tracking parameters to optimize the number of swaps for a batch of similar movies. A benchmark shows that FastTrack is orders of magnitude faster than state-of-the-art tracking algorithms, with a comparable tracking accuracy. The source code is available under the GNU GPLv3 at https://github.com/FastTrackOrg/FastTrack and pre-compiled binaries for Windows, Mac and Linux are available at http://www.fasttrack.sh.  相似文献   

13.
The lifestyle of parasitic plants is associated with peculiar morphological, genetic, and physiological adaptations that existing online plant-specific resources fail to adequately represent. Here, we introduce the Web Application for the Research of Parasitic Plants (WARPP) as an online resource dedicated to advancing research and development of parasitic plant biology. WARPP is a framework to facilitate international efforts by providing a central hub of curated evolutionary, ecological, and genetic data. The first version of WARPP provides a community hub for researchers to test this web application, for which curated data revolving around the economically important Broomrape family (Orobanchaceae) is readily accessible. The initial set of WARPP online tools includes a genome browser that centralizes genomic information for sequenced parasitic plant genomes, an orthogroup summary detailing the presence and absence of orthologous genes in parasites compared with nonparasitic plants, and an ancestral trait explorer showing the evolution of life-history preferences along phylogenies. WARPP represents a project under active development and relies on the scientific community to populate the web app’s database and further the development of new analysis tools. The first version of WARPP can be securely accessed at https://parasiticplants.app. The source code is licensed under GNU GPLv2 and is available at https://github.com/wickeLab/WARPP.

The WARPP online resource is a new, expandable, and interactive parasitic plant-specific data hub that provides online tools tailored to the peculiarities of parasitic angiosperms.  相似文献   

14.
dadi is a popular but computationally intensive program for inferring models of demographic history and natural selection from population genetic data. I show that running dadi on a Graphics Processing Unit can dramatically speed computation compared with the CPU implementation, with minimal user burden. Motivated by this speed increase, I also extended dadi to four- and five-population models. This functionality is available in dadi version 2.1.0, https://bitbucket.org/gutenkunstlab/dadi/.  相似文献   

15.
A streaming assembly pipeline utilising real-time Oxford Nanopore Technology (ONT) sequencing data is important for saving sequencing resources and reducing time-to-result. A previous approach implemented in npScarf provided an efficient streaming algorithm for hybrid assembly but was relatively prone to mis-assemblies compared to other graph-based methods. Here we present npGraph, a streaming hybrid assembly tool using the assembly graph instead of the separated pre-assembly contigs. It is able to produce more complete genome assembly by resolving the path finding problem on the assembly graph using long reads as the traversing guide. Application to synthetic and real data from bacterial isolate genomes show improved accuracy while still maintaining a low computational cost. npGraph also provides a graphical user interface (GUI) which provides a real-time visualisation of the progress of assembly. The tool and source code is available at https://github.com/hsnguyen/assembly.  相似文献   

16.
Understanding the relationships between biological processes is paramount to unravel pathophysiological mechanisms. These relationships can be modeled with Transfer Functions (TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here we present Iliski, a software dedicated to TFs computation between two signals. It includes different pre-treatment routines and TF computation processes: deconvolution, deterministic and non-deterministic optimization algorithms that are adapted to disparate datasets. We apply Iliski to data on neurovascular coupling, an ensemble of cellular mechanisms that link neuronal activity to local changes of blood flow, highlighting the software benefits and caveats in the computation and evaluation of TFs. We also propose a workflow that will help users to choose the best computation according to the dataset. Iliski is available under the open-source license CC BY 4.0 on GitHub (https://github.com/alike-aydin/Iliski) and can be used on the most common operating systems, either within the MATLAB environment, or as a standalone application.  相似文献   

17.
18.
19.
In the past few years, a wealth of sample-specific network construction methods and structural network control methods has been proposed to identify sample-specific driver nodes for supporting the Sample-Specific network Control (SSC) analysis of biological networked systems. However, there is no comprehensive evaluation for these state-of-the-art methods. Here, we conducted a performance assessment for 16 SSC analysis workflows by using the combination of 4 sample-specific network reconstruction methods and 4 representative structural control methods. This study includes simulation evaluation of representative biological networks, personalized driver genes prioritization on multiple cancer bulk expression datasets with matched patient samples from TCGA, and cell marker genes and key time point identification related to cell differentiation on single-cell RNA-seq datasets. By widely comparing analysis of existing SSC analysis workflows, we provided the following recommendations and banchmarking workflows. (i) The performance of a network control method is strongly dependent on the up-stream sample-specific network method, and Cell-Specific Network construction (CSN) method and Single-Sample Network (SSN) method are the preferred sample-specific network construction methods. (ii) After constructing the sample-specific networks, the undirected network-based control methods are more effective than the directed network-based control methods. In addition, these data and evaluation pipeline are freely available on https://github.com/WilfongGuo/Benchmark_control.  相似文献   

20.
Endothelial nitric oxide synthase (eNOS) and receptor-type vascular endothelial protein tyrosine phosphatase (VE-PTP) are one of the majors signaling pathways related to endothelial health in diabetes. Several reports have shown that the inhibition of VE-PTP can lead the nitric oxide production, although repeated studies showed that VE-PTP regulated the eNOS exclusive at Ser1177 in indirect-manner. A recent, exciting paper (Siragusa et al. in Cardiovasc Res, 2020. https://doi.org/10.1093/cvr/cvaa213), showing that VE-PTP regulates eNOS in a direct-manner, dephosphorylating eNOS at Tyr81 and indirect at Ser1177 and the effects of a VE-PTP inhibitor, AKB-9778, in the blood pressure from diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号