首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incisal bite force direction was recorded and analyzed in ten human subjects using a specially designed force transducer. In all ten subjects the maxillary incisal bite force was vertically and anteriorly directed both during static biting and during biting associated with simultaneous mandibular translation and rotation. Since the resultant muscle force could not have been equal and opposite to the mandibular bite force, the mandibular condyles must have been loaded. These data demonstrate that the mandible acts as a lever during incisal biting and that there is no consistent relationship between incisal bite force direction and object size. In some individuals the bite force direction was more vertical during biting on a large transducer (30 mm high), while in other subjects it was more vertical during biting on a small transducer (10 mm high).  相似文献   

2.
Many studies have identified relationships between the forces generated by the cranial musculature during feeding and cranial design. Particularly important to understanding the diversity of cranial form amongst vertebrates is knowledge of the generated magnitudes of bite force because of its use as a measure of ecological performance. In order to determine an accurate morphological proxy for bite force in elasmobranchs, theoretical force generation by the quadratomandibularis muscle of the spiny dogfish Squalus acanthias was modeled using a variety of morphological techniques, and lever-ratio analyses were used to determine resultant bite forces. These measures were compared to in vivo bite force measurements obtained with a pressure transducer during tetanic stimulation experiments of the quadratomandibularis. Although no differences were found between the theoretical and in vivo bite forces measured, modeling analyses indicate that the quadratomandibularis muscle should be divided into its constituent divisions and digital images of the cross-sections of these divisions should be used to estimate cross-sectional area when calculating theoretical force production. From all analyses the maximum bite force measured was 19.57 N. This relatively low magnitude of bite force is discussed with respect to the ecomorphology of the feeding mechanism of S. acanthias to demonstrate the interdependence of morphology, ecology, and behavior in organismal design.  相似文献   

3.
咬合力与动物咀嚼系统的形态特征以及食物硬度有关,是评价动物取食行为的重要指标之一。本文于2012年4月在云南西双版纳对食果、食蜜和食虫3种食性的12种蝙蝠咬合力进行研究,使用咬合力探测仪测量蝙蝠手持状态下的咬合力,分析不同食性蝙蝠咬合力的差异,并与其体型(体重、前臂长、头长)进行相关分析。结果表明,3种食性蝙蝠的咬合力存在显著差异,食果蝙蝠咬合力最大,其次为食蜜蝙蝠,食虫蝙蝠咬合力最小;但是去除体重因素的影响之后,不同食性蝙蝠的咬合力则差异不显著。蝙蝠咬合力与体重、前臂长、头长均呈显著正相关。本文研究结果表明,体重是影响蝙蝠咬合力的主要因素,食性在一定程度上也对咬合力产生影响,食蜜蝙蝠吻部延长,头长上的特化导致其咬合力的减弱。  相似文献   

4.
Balance is a complex, sensorimotor task requiring an individual to maintain the center of gravity within the base of support. Quantifying balance in a reliable and valid manner is essential to evaluating disease progression, aging complications, and injuries in clinical and research settings. Typically, researchers use force plates to track motion of the center of gravity during a variety of tasks. However, limiting factors such as cost, portability, and availability have hindered postural stability evaluation in these settings. This study compared the “gold standard” for assessing postural stability (i.e., the laboratory-grade force plate) to a more affordable and portable assessment tool (i.e., BTrackS balance plate) in healthy young adults. Correlations and Bland-Altman plots between the center of pressure outcome measures derived from these two instruments were produced. Based on the results of this study, the measures attained from the portable balance plate objectively quantified postural stability with high validity on both rigid and compliant surfaces, demonstrated by thirty-five out of thirty-eight observed postural stability metrics in both surface conditions with a correlation of 0.98 or greater. The low cost, portable system performed similarly to the lab-grade force plate indicating the potential for practitioners and researchers to use the BTrackS balance plate as an alternative to the more expensive force plate option for assessing postural stability, whether in the lab setting or in the field.  相似文献   

5.
Single element foil strain gages were bonded to mandibular cortical bone in eight specimens of Galago crassicaudatus. The gage was bonded below the Pm4 or M2 adjacent to the lower border of the mandible. The bonded strain gage was connected to form one arm of a Wheatstone bridge. Following recovery from the general anesthetic, the restrained Galago bit either a piece of wood, a food object, or a bite force transducer. During these biting episodes, mandibular bone strain deformed the strain gage and the resulting change in electrical resistance of the gage caused voltage changes across the Wheatstone bridge. These changes, directly proportional to the amount of bone strain along the gage site, were recovered by a strip chart recorder. Bone strain was measured on both the working and balancing sides of the jaws. Maximum values of bone strain and bite force were 435 microstrain (compression) and 8.2 kilograms respectively. During bending of the mandible, the correlation between bone strain (tension or compression) and bite force ranged from -0.893 (tension) to 0.997 (compression). The experiments reported here demonstrate that only a small percentage of the Galago bite force is due to balancing side muscle force during isometric unilateral molar biting. In addition, these experiments demonstrate that the Galago mandible is bent in a predictable manner during biting. The amount of apparent mandibular bone strain is dependent on (1) the magnitude of the bite force and (2) the position of the bite point.  相似文献   

6.
Bone is a highly plastic tissue that reflects the many potential sources of variation in shape. Here, we focus on the functional aspects of bone remodeling. We choose the skull for our analyses because it is a highly integrated system that plays a fundamental role in feeding and is thus, likely under strong natural selection. Its principal mechanical components are the bones and muscles that jointly produce bite force and jaw motion. Understanding the covariations among these three components is of interest to understand the processes driving the evolution of the feeding apparatus. In this study, we quantitatively and qualitatively compare interactions between these three components in shrews from populations known to differ in shape and bite force. Bite force was measured in the field using a force transducer and skull shape was quantified using surface geometric morphometric approaches based on µCT‐scans of the skulls of same individuals. The masseter, temporalis, pterygoideus, and digastricus muscles of these individuals were dissected and their cross sectional areas determined. Our results show strong correlations between bite force and muscle cross sectional areas as well as between bite force and skull shape. Moreover, bite force explains an important amount of skull shape variation. We conclude that interactions between bone shape and muscle characteristics can produce different morpho‐functional patterns that may differ between populations and may provide a suitable target for selection to act upon. J. Morphol. 276:301–309, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Ratios of muscle activities in unilateral isometric biting are assumed to provide information on strategies of muscle activation independently from bite force. If valid, this assumption would facilitate experiments as it would justify subject-control instead of transducer-based force control in biting studies. As force independence of ratios is controversial, we tested whether activity ratios are associated with bite force and whether this could affect findings based on subject-controlled force. In 52 subjects, bite force and bilateral masseter and temporalis electromyograms were recorded during unilateral biting on a transducer with varying force levels and with uniform subject-controlled force. Working/balancing and temporalis/masseter ratios of activity peaks were related to bite force peaks. Activity ratios were significantly but weakly correlated with the bite force. The subject-controlled force varied within ±25% around the prescribed force in 95% of all bites. This scatter could cause a variation of group mean activity ratios of at most ±6% because of the weak correlation between bite force and ratios. As this small variation is negligible in most cases, subject-control of bite force can be considered an appropriate method to obtain group means of relative muscle activation in particular when force control with transducers is not feasible.  相似文献   

8.
A variety of psychosocial factors have been shown to influence immunological responses in laboratory primates. The present investigation examined the effects of social housing condition on cell-mediated immune responses, comparing rhesus macaques (Macaca mulatta) in three housing conditions (single, pair, and group). Subjects included 12 adults of both sexes in each housing condition (N=36). Multiple blood samples (0, 4, 8, and 12 months) were collected for immunological analyses, including lymphocyte subsets, lymphocyte proliferation to pathogens and nonspecific mitogens, natural killer cell activity, and cytokine production. CD4(+) to CD8(+) ratios differed significantly across housing conditions and singly caged subjects had significantly lower CD4(+)/CD8(+) after the 4-month timepoint than did socially housed (pair and group) subjects. CD4(+) to CD8(+) ratios were positively correlated within subjects, suggesting a trait-like aspect to this parameter. Lymphocyte proliferation responses to all four gastrointestinal pathogens differed across housing conditions (at least at the 0.08 level), as did proliferation responses to StaphA, and the production of cytokines (IFN-gamma, IL-2, and IL-10). Proliferation responses of singly caged monkeys did not differ from socially housed monkeys and the highest levels of both IFN-gamma and IL-10 were produced by group housed subjects. The data demonstrate that social housing condition affects immune responses. While not unidirectional, these effects generally suggest enhanced immune responses for socially housed animals. Since rhesus monkeys live socially in nature, and the immune responses of singly housed animals differed from those housed socially, there is considerable motivation and justification for suggesting that the use of singly housed rhesus macaques may complicate interpretations of normal immunological responses. This may have important implications for the management, treatment, and selection of primate subjects for immunological studies.  相似文献   

9.
The bite force of three surimi gels with molars was measured in the mouth using a multiple-point sheet sensor. A peak force appeared at the breaking point of each sample, and then the force increased again, accompanied by a decrease in the opening between the upeer and lower teeth. Low values in the peak force, pressure, and time at the first peak, the time at which the maximum contact area was engaged, impulse, and slope of bite curve were observed in samples with low breaking force and low breaking deformation found by the mechanical measurement of gel strength, and with less toughness in the sensory assessment. The duration of the bite force, the second peak time, and active bite pressure at the second peak did not change with a change in the surimi texture. The active pressure at the breaking point of each gel was affected by gel strength, while that at the second peak was independent of the gel strength.  相似文献   

10.
The control of bite force during varying submaximal loads was examined in patients suffering from bruxism compared to healthy humans not showing these symptoms. The subjects raised a bar (preload) with their incisor teeth and held it between their upper and lower incisors using the minimal bite force required to keep the bar in a horizontal position. Further loading was added during the preload phase. A sham load was also used. Depending on the session, the teeth were loaded by the experimenter or the subject and in one session the subject did not see the load (no visual feedback). The bite force was measured continuously using a calibrated force transducer. In all the subjects, the bite force increased with increasing load. Following the addition of the load, the level of the tonic bite force was reached rapidly with no marked overshoot. The patients with bruxism used significantly higher bite forces to hold the submaximal loads compared to the control subjects. In the control subjects, the holding forces for each submaximal load were identical in the men and the women and were independent of subject maximal bite force. Sham loading evoked no marked responses in biting force. Whether the subject or the experimenter added the load or whether the subject had visual feedback or not were not significant factors in determining the level of bite force. The results indicated that the patients with bruxism used excessively large biting forces for each given submaximal load. This study showed no evidence that the inappropriate control of bite force by patients with bruxism was due to an abnormality in the higher cortical circuits that regulates the function of trigeminal motoneurons in the brainstem. This was shown by a lack of abnormality in coordination of voluntary hand movement with biting force, a lack of abnormal anticipation response to a sham load and a lack of any effect of visual feedback. The results were in line with the hypothesis that afferent input from oral (periodontal or masticatory muscle) tissues does not provide an appropriate control of motor command in bruxism.  相似文献   

11.
The bite force of three surimi gels with molars was measured in the mouth using a multiple-point sheet sensor. A peak force appeared at the breaking point of each sample, and then the force increased again, accompanied by a decrease in the opening between the upper and lower teeth. Low values in the peak force, pressure, and time at the first peak, the time at which the maximum contact area was engaged, impulse, and slope of bite curve were observed in samples with low breaking force and low breaking deformation found by the mechanical measurement of gel strength, and with less toughness in the sensory assessment. The duration of the bite force, the second peak time, and active bite pressure at the second peak did not change with a change in the surimi texture. The active pressure at the breaking point of each gel was affected by gel strength, while that at the second peak was independent of the gel strength.  相似文献   

12.
Daily fecal estrogen and progestin concentrations were measured by enzyme immunoassay in five female cheetahs (Acinonyx jubatus) for 4-6 months. The animals were housed under different conditions: (1) a female always housed in a group including one or more males; (2) two females isolated individually for short or long periods; (3) the other two females housed together. These females were separately housed with males for mating around the time of the estrogen peaks. The hormone profiles were similar in all five females regardless of the housing conditions. However, only the female that had been isolated from other cheetahs for over a year mated and reproduce cubs successfully, whereas the remaining four did not (one was isolated for only 6 weeks, another was always housed with males and the other two were housed together). In all females, the estrogen peaks were obtained at regular intervals of approximately 8-15 days. Unlike estrogen, the progestin concentrations were always low in all females except during pregnancy and they did not increase following the estrogen surges. These results showed that female cheetahs are typically reflex ovulators and female receptiveness may not be reflected to her hormonal states. It was also suspected that individual housing and long-term separation are advantageous for breeding this wild cat in captivity, mimicking the ecological/behavioral patterns in the wild, though housing condition might have no effect on the estrous cycle.  相似文献   

13.
The aim of this study was to obtain insight into the coactivation behaviour of the jaw muscles under various a priori defined static loading conditions of the mandible. As the masticatory system is mechanically redundant, an infinite number of recruitment patterns is theoretically possible to produce a certain bite force. Using a three-component force transducer and a feedback method, subjects could be instructed to produce a bite force of specific direction and magnitude under simultaneous registration of the EMG activity of anterior and posterior temporal, masseter and digastric muscles on each side. Forces were measured at the second premolars. Vertical, anterior, posterior, lateral and medial force directions were examined; in each direction force levels between 50 N and maximal voluntary force were produced. The results show that for all muscles the bite force-EMG relationship obeys a straight-line fit for forces exceeding 50 N. The relationship varies with bite force direction, except in the case of the digastric muscles. Variation is small for the anterior temporal and large for the posterior temporal and masseter muscles. The relative activation of muscles for a particular force in a particular direction in unique, despite the redundancy.  相似文献   

14.
Social housing is the optimal way of housing female laboratory mice. However, individual housing may be required in experimental designs, for example after surgery. We therefore investigated whether housing two female mice in a cage, separated by a grid partition ('living apart together', LAT), counters the adverse effects of individual housing on postoperative recovery. Ten individually housed (IND) mice, nine socially housed (SOC) mice and nine mice, housed LAT, were surgically implanted with a telemetry transmitter. From one week prior to surgery until three weeks thereafter, several physiological and behavioural parameters were measured in the mice subjected to surgery. The telemetry transmitter measured heart rate (HR), body temperature and activity continuously. Body weight, food and water intake were scored regularly, as were wound healing, ease of handling, nest building and behaviour. Results indicated that SOC mice appear to be less affected by abdominal surgery than IND mice, as indicated by HR and behaviour. LAT, however, did not appear to be beneficiary to the mice. Increased HR levels and differences in behaviour as compared with both SOC and IND animals indicate that LAT may even be the most stressful of the three housing conditions. We therefore conclude that mice benefit most from social housing after surgery. If, however, social housing is not possible, individual housing appears to be a better option than separating mice by a grid partition.  相似文献   

15.
Social living is assumed to be a critical feature of nonhuman primate existence inasmuch as most primate species live in social groups in nature. Recent USDA legislation emphasizes the importance of social contact in promoting psychological well-being and recommends that laboratory primates be housed with companions when consistent with research protocols. Our goals were to examine the link between social housing and psychological well-being and to explore the idea that research may be compromised when primates are studied in environments that vary too greatly from their natural ecological setting (individual cage housing versus group housing). Three general points emerge from these examinations. First, providing companionship may be a very potent way in which to promote psychological well-being in nonhuman primates; however, social living is not synonymous with well-being. The extent to which social housing promotes psychological well-being can vary across species and among individual members of the same species (for example, high- and low-ranking monkeys). Secondly, housing conditions can affect research outcomes in that group-housed animals may differ from individually housed animals in response to some manipulation. Social interaction may be a significant variable in regulating the biobehavioral responses of nonhuman primates to experimental manipulations. Finally, a larger number of socially housed subjects than individually housed subjects may be necessary for some biomedical research projects to yield adequate data analysis. Thus, social living has significant benefits and some potential costs not only for the animals themselves, but for the research enterprise.  相似文献   

16.
A key assumption in ecomorphological studies is that morphology–function relationships are invariant due to underlying biomechanical principles. We tested the hypothesis that morphology–performance relationships are invariant across different seasons by examining how a key performance trait, bite force, and two aspects of morphology (head shape and dewlap size) changed seasonally in the field and in the laboratory in the green anole lizard Anolis carolinensis . We found that not only did bite force change seasonally (up to 80% within the same individual), but relationships between morphology and bite force are highly plastic. Of the three traits examined (bite force, head shape, and dewlap area), only head shape did not change seasonally. We noted opposing trends for how bite force and dewlap area changed seasonally; whereas dewlap areas were large in the spring, and small in the winter, bite forces were low in the spring and high in the winter. This pattern occurred because of a tradeoff at the individual level: individuals in the spring with large dewlaps and high bite forces diminish their dewlaps (but not bite force), whereas individuals with small dewlaps and low bite forces in the spring increase their bite forces (but not dewlap size). We also show that this trend was apparent both in the field (comparing different individuals) and the laboratory (comparing the same set of individuals under standardized conditions). Finally, seasonal changes were not consistent among individuals for either bite force or dewlap area, as individuals changed seasonally in proportion to their initial state. These findings cast doubt on the widely held view of invariant morphology–performance relationships, and offer a cautionary note for eco-morphological studies.  相似文献   

17.
Female cynomolgus monkeys (Macaca fascicularis) were kept under 3 different housing conditions: individually in type A cages (45 X 45 X 60 cm), individually in type B cages (70 X 70 X 100 cm) and as couples in type B cages. Primigravida did not show early embryonic mortality, differing significantly from 11.5% early losses in multigravida. Early embryonic mortality was not affected by housing condition. Further reproductive failure rates did not differ significantly for primigravid (18.5%) and multigravid females (24.0%), though abortion tended to occur more frequently in primigravida. Perinatal mortality (16.1%) accounted for most of the losses under each housing condition. More successful pregnancies (90%) were recorded for females housed individually in type B cages than for females housed in type A cages (68%). About 50% of the couples originally established remained until weaning of their infants, yielding 77% viable offspring. For multigravid females statistical evaluation showed a significant effect of housing conditions on reproductive outcome (X2-test 0.01 less than P less than 0.05) that could be entirely attributed to low losses in females housed individually in type B cages. It is concluded that housing conditions can have a profound influence on reproductive success in cynomolgus monkeys.  相似文献   

18.
A group of 35 90-year old subjects, randomly selected from the gerontologic population study in Göteborg (H-70), were examined with respect to function and dysfunction of the masticatory system. The methods included a questionnaire, clinical examination and recording of bite force endurance and maximal bite force, measured in the central incisor region. Forty percent were edentulous, 29% were partially edentulous and wore a removable denture, while the others were dentate without removable prostheses. Signs and symptoms of temporomandibular disorders were mostly mild and infrequent, except TMJ crepitation which was recorded in 69% of the subjects. Maximal bite force was in general low (mean 94 N) but showed a great individual variation (range 10 to 410 N). Bite force endurance was also very variable (mean 72 s, range 10 to 205 s). None of the 35 subjects reported poor masticatory ability, but 2 said they could not chew all kinds of food. In spite of a reduced bite force this group of 90-year olds considered their masticatory ability as good and most of them had no severe signs and symptoms of temporomandibular disorders.  相似文献   

19.
Irschick DJ  Meyers JJ 《Oecologia》2007,153(2):489-499
Evolutionary ecologists have devoted substantial attention to understanding which factors dictate processes of mortality within populations. Our goal was to understand the dynamics of natural selection on two performance traits (bite force and sprint speed) and associated morphological variables. We first quantified performance and morphology for a sample of marked tree lizards (Urosaurus ornatus) at the middle of the breeding season. We then sampled the same population in the nonbreeding season to determine which of the original lizards survived, and we also remeasured morphological and performance variables for surviving lizards. We found evidence for directional selection favoring fast sprinters in male lizards, but also a nonsignificant stabilizing trend that disfavored the very fastest lizards. However, we also detected substantial seasonal plasticity in bite force and head width, suggesting that an analysis of selection on only preselection (breeding season) values may be overly simplistic. Urosaurus males and females with low bite forces (and narrow heads) in the breeding season generally increased their bite forces and head widths during the nonbreeding season. In contrast, lizards that were initially strong biters in the breeding season diminished in head width and declined dramatically in bite force (up to about 35%). We suggest that seasonal plasticity could act as a retarding force for selection on performance, and could dampen seasonal and year-to-year fluctuations in selective pressures. We argue that this phenomenon may be particularly likely for performance traits important for social interactions related to breeding, such as bite force.  相似文献   

20.
Although bite force is a frequently studied performance measure of feeding ecology, changes in bite force over ontogeny have rarely been investigated. Biting by the blacktip shark Carcharhinus limbatus was theoretically modeled over ontogeny to investigate the scaling of bite force, the morphological basis of the observed scaling relationship, the ecological consequences of ontogenetic changes in performance, and whether cranial morphometrics can be used as an accurate proxy for bite force. Theoretical bite force, which was positively allometric with respect to total length (TL), ranged from 32 N (61 cm TL) to 423 N (152 cm TL) at the anterior tips of the jaws and from 107 (61 cm TL) to 1083 N (152 cm TL) at the posterior teeth. This observation is attributed to positive allometry in the mechanical advantage of the jaw-adducting mechanism and the cross-sectional area of all four jaw-adducting muscles. Theoretical bite force was accurately predicted by cranial morphometrics including prebranchial length and head width as well. Although positive allometry of bite force in C. limbatus would seem to indicate an ecological necessity for this phenomenon, dietary analyses do not necessarily indicate any ontogenetic shift in prey types requiring larger bite forces. The positively allometric increase in theoretical bite force may be associated with numerous other selective pressures including maintenance of an apical position within the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号