首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effects of quiet inspiration versus slow expiration on sternocleidomastoid (SCM) and abdominal muscle activity during abdominal curl-up in healthy subjects. Twelve healthy subjects participated in this study. Surface electromyography (EMG) was used to collect activity of bilateral SCM, rectus abdominis (RA), external oblique (EO), and transversus abdominis/internal oblique (TrA/IO) muscles. A paired t-test was used to determine significant differences in the bilateral SCM, RF, EO, and TrA/IO muscles between abdominal curl-up with quiet inspiration and slow expiration. There were significantly lower EMG activity of both SCMs and greater EMG activity of both IOs during abdominal curl-up with slow expiration, compared with the EMG activity of both SCMs and IOs during abdominal curl-up with quiet inspiration (p < .05). The results of this study suggest that slow expiration would be recommended during abdominal curl-up for reduced SCM activation and selective activation of TrA/IO in healthy subjects compared with those in abdominal curl up with quiet inspiration.  相似文献   

2.
This study aimed to clarify the difference in the onset of EMG activity between eight trunk muscles, including the anterior (QL-a) and posterior (QL-p) layers of the quadratus lumborum during rapid shoulder joint abduction. Thirteen healthy men participated in this study. Electromyography of the QL-a, QL-p, transversus abdominis (TrA), internal oblique (IO), external oblique (EO), rectus abdominis (RA), lumbar multifidus (LMF), lumbar erector spinae (LES) on non-movement side, and middle deltoid (MD) on the movement side were measured. Subjects who were standing in a relaxed position performed rapid shoulder abduction with the dominant hand after light stimulus with or without a 3 kg wrist weight. Two-way ANOVA (muscles × weight conditions) was used to compare the onset of trunk muscles relative to that of MD. There was a significant main effect of the muscles. The onset of the QL-a, QL-p, and TrA was significantly earlier than that of the IO, EO, LMF, and LES (P < 0.01). This result suggests that the activities of the QL-a, QL-p, and TrA have a crucial role in controlling the center of mass within the base of support and stabilizing the lumbar spine in the coronal plane during shoulder abduction.  相似文献   

3.
This study assessed the level and symmetry of deep abdominal muscle activation following a supratentorial stroke during a modified hip flexion task. Movement-related activation levels in the transversus abdominus (TrA) and internal oblique (IO) were investigated in people with a subacute (<3.25 months) supratentorial stroke (n = 11) and a matched control group (n = 11). Electromyographic activity in TrA and IO were recorded using fine wires inserted under ultrasound guidance while participants performed a standardised head lift or unilateral hip flexion. During head lift there was no significant difference in the amplitude of activation ipsi- and contra-lateral to the stroke or between groups. During unilateral hip flexion the TrA and IO were activated more on both sides when moving the paretic leg. In the control group muscle activity was modulated by task with activity being higher ipsilateral to the moving leg; in contrast in the stroke group IO muscle activity tended to be higher on the non-paretic side irrespective of moving limb. Greater TrA and IO muscle activity during hip flexion of the paretic leg may represent compensatory activity that acts to facilitate activation of the paretic hip flexors and/or the presence of overflow.  相似文献   

4.
The abdominal hollowing technique is used for training the transversus abdominis (TrA). However, the optimal intensity of hollowing is still unclear. The objective of the present study is to verify the validity of estimating the tension of the TrA by measuring the girth of the abdomen with a tape and to determine the optimum intensity of hollowing to effectively train the TrA. Sixteen healthy males performed hollowing with an intensity of 0%, 25%, 50%, 75%, and 100%, estimated from the girth of the abdomen. The shear elastic modulus was measured for the rectus abdominis (RA), external oblique (EO), internal oblique (IO), and TrA at all intensities via ultrasonic shear wave elastography. The shear elastic modulus was considered as the index of the tension of the abdominal muscles at each intensity, and the ratio of the TrA to RA, EO, and IO respectively was calculated as the index of TrA selectivity. As the intensity of hollowing increased, the girth of abdomen decreased and tension of all the four muscles increased. The ratio of TrA to the RA, EO, and IO did not exhibit a significant variation among hollowing intensities of 25% to 100%. It is rational to estimate the tension of the TrA by measuring the girth of the abdomen. Moreover, considering both TrA contraction intensity and selectivity, abdominal hollowing performed at maximum intensity was effective for the maximum contraction training of the TrA.  相似文献   

5.
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.  相似文献   

6.
The abdominal muscle activity has been shown to be variable in subjects with chronic obstructive pulmonary disease (COPD) when respiratory demand increases and their recruitment pattern may change the mechanics, as well as the work and cost of breathing. The scientific evidence in subjects “at risk” for the development of COPD may be important to understand the natural history of this disease. This study aims to evaluate the effect of inspiratory and expiratory loads on the abdominal muscle activity during breathing in subjects “at risk” for the development of COPD and healthy. Thirty-one volunteers, divided in “At Risk” for COPD (n = 17; 47.71 ± 5.11 years) and Healthy (n = 14; 48.21 ± 6.87 years) groups, breathed at the same rhythm without load and with 10% of the maximal inspiratory or expiratory pressures, in standing. Surface electromyography was performed to assess the activation intensity of rectus abdominis (RA), external oblique and transversus abdominis/internal oblique (TrA/IO) muscles, during inspiration and expiration. During inspiration, in “At Risk” for COPD group, RA muscle activation was higher with loaded expiration (p = 0.016); however, in Healthy group it was observed a higher activation of external oblique and TrA/IO muscles (p < 0.050). During expiration, while in “At Risk” for COPD group, RA muscle activation was higher with loaded inspiration (p = 0.009), in Healthy group TrA/IO muscle showed a higher activation (p = 0.025). Subjects “at risk” for the development of COPD seemed to have a specific recruitment of the superficial layer of ventrolateral abdominal wall for the mechanics of breathing.  相似文献   

7.
Lumbo-pelvic stability relies, amongst other factors, on co-contraction of the lumbo-pelvic muscles. However, during submaximal trunk flexion and extension efforts, co-contraction of antagonist muscles is limited. It was predicted that activity of the deeper lumbo-pelvic muscles that are often excluded from analysis (transversus abdominis (TrA) and the deep fascicles of multifidus (DM)), would increase with load in each direction. In eleven healthy subjects, electromyographic activity (EMG) was recorded from eight trunk muscles using surface and fine-wire electrodes. Subjects performed isometric flexion and extension efforts to submaximal loads of 50, 100, 150 and 200 N and a maximal voluntary contraction (MVC). Loading tasks were then repeated in trials in which subjects knew that the load would release at an unpredictable time. Compared to the starting position, EMG of all muscles, except DM, increased during MVC efforts in both directions. During the flexion and extension submaximal tasks, there was no increased co-contraction of antagonist muscles. However, TrA EMG increased in both directions. In the unpredictable trials, EMG of all lumbo-pelvic muscles except TrA was decreased. These findings provide further support for a contribution of TrA to lumbo-pelvic stability. In submaximal tasks, TrA activation may enhance stability as a strategy to improve trunk stiffness without requiring a concurrent increase in activity of the larger torque producing trunk muscles.  相似文献   

8.
It has been shown that under isometric conditions, as the activity of the abdominal muscles increases, the thicknesses of the muscles also increase. The purpose of this experiment was to determine whether change in muscle thickness could be used as a measure of muscle activity during a deadlift as well as determining the effect of a weightlifting belt and/or the Valsalva maneuver on the muscle thicknesses. The Transversus Abdominis (TrA) and Internal Obliques (IO) muscles were analyzed at rest and during a deadlift. Muscle thickness was measured using ultrasound imaging and muscle activity was simultaneously recorded using electromyography. Each subject performed deadlift under normal conditions, while performing the Valsalva maneuver, while wearing a weightlifting belt and while both utilizing the belt and the Valsalva maneuver. There was no relationship between change in muscle thickness and muscle activity for both the TrA and IO (R2 < 0.13 for all conditions). However it was found that the Valsalva maneuver increased abdominal muscle thickness whereas the belt limited muscle expansion; each with an increase in activity. These results indicate that ultrasound cannot be used to measure muscle activity for a deadlift and that the belt affects how the IO and TrA function together.  相似文献   

9.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

10.
Objectives:To compare ultrasonography (USG) parameters of deep abdominal muscles (transversus abdominis-TrA, internal obliques-IO) between women with and without chronic neck pain (CNP).Methods:Women with CNP (n=18; mean-age=37.7 years; mean-BMI=22.7 kg/m2) and asymptomatic individuals (n=18; mean-age=36.1 years; mean-BMI=21.8 kg/m2) participated in the study. The activation of the deep neck flexors (ADNF) was measured using cranio-cervical flexion test. Muscle thickness, changes in thickness (ΔT), and contraction ratio (CR) of deep abdominal muscles were evaluated by ultrasonography device in two conditions: standard-protocol and during ADNF. For each condition, ultrasound image of abdominal muscles was captured at rest and during abdominal draw-in manoeuvre (ADIM).Results:Comparative statistics revealed no significant difference between groups regarding ultrasonography parameters in the standard-protocol (p>0.05). Besides, there was no difference in the CR of TrA and IO between groups in the two conditions. However, women with CNP showed less muscle thickness of TrAADIM during ADNF than the asymptomatic participants (p<0.05). The CNP group also had decreased ΔT of TrA(ADIM-rest) during ADNF compared to the asymptomatic group (p<0.05).Conclusions:The ultrasonography parameters of TrA suggest that motor control in the lumbar region is altered in women with CNP. The combination of cervical stabilization exercises with ADIM can be a novel strategy in the treatment of CNP.  相似文献   

11.
The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.  相似文献   

12.
The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p < 0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p < 0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.  相似文献   

13.
The purpose of this study was to determine if 8 weeks of exercise affects motor control in people with chronic low back pain (CLBP), measured by anticipatory (APAs) and compensatory postural adjustments (CPAs). APAs and CPAs were measured prior to and following 8 weeks in two groups of people with CLBP: an exercise group (n = 12) who attended three exercise sessions per week for 8 weeks; and a non-exercise control group (n = 12) who were advised to continue their usual activities for the duration of the study. APAs and CPAs were recorded during unilateral arm flexion, bilaterally from rectus abdominis (RA), transverse abdominis/internal oblique (TA/IO), and erector spinae (ES) via surface electromyography. Analysis of muscle onsets and APA amplitudes suggests APAs did not change for either group. Ipsi-lateral TA/IO CPAs increased for the exercise group and ipsi-lateral TA/IO CPAs decreased for the control group. Only exercise promoted a pattern of TA/IO activity during CPAs similar to healthy individuals, suggesting improved control of rotational torques. These results show motor control improvement following exercise in people with CLBP, highlighted by improved side specific control of TA/IO.  相似文献   

14.
The goal of this study was to quantify the relative contributions of each muscle group surrounding the spine to vertebral joint rotational stiffness (VJRS) during the push-up exercise. Upper-body kinematics, three-dimensional hand forces and lumbar spine postures, and 14 channels (bilaterally from rectus abdominis, external oblique, internal oblique, latissimus dorsi, thoracic erector spinae, lumbar erector spinae, and multifidus) of trunk electromyographic (EMG) activity were collected from 11 males and used as inputs to a biomechanical model that determined the individual contributions of 10 muscle groups surrounding the lumbar spine to VJRS at five lumbar vertebral joints (L1-L2 to L5-S1). On average, the abdominal muscles contributed 64.32 +/- 8.50%, 86.55 +/- 1.13%, and 83.84 +/- 1.95% to VJRS about the flexion/extension, lateral bend, and axial twist axes, respectively. Rectus abdominis contributed 43.16 +/- 3.44% to VJRS about the flexion/extension axis at each lumbar joint, and external oblique and internal oblique, respectively contributed 52.61 +/- 7.73% and 62.13 +/- 8.71% to VJRS about the lateral bend and axial twist axes, respectively, at all lumbar joints with the exception of L5-S1. Owing to changes in moment arm length, the external oblique and internal oblique, respectively contributed 55.89% and 50.01% to VJRS about the axial twist and lateral bend axes at L5-S1. Transversus abdominis, multifidus, and the spine extensors contributed minimally to VJRS during the push-up exercise. The push-up challenges the abdominal musculature to maintain VJRS. The orientation of the abdominal muscles suggests that each muscle primarily controls the rotational stiffness about a single axis.  相似文献   

15.
Ten normal subjects performed continuous trunk flexion/extensions (F/E) without any restraining apparatus at free, 3, 2.25 and 1.5 s periods and a fatiguing task of F/E at 1.5 s period during 45 s. Kinematics of the trunk was obtained with bilateral electromyographic (EMG) activity of the erector spinae (three levels), the abdominal oblique muscles and the rectus abdominis muscles. The free period chosen by the subjects was found to vary between 3.05 and 1.47 s. Lateral flexion of the spine was similar in each task but rotation about its longitudinal axis increased as the F/E period shortened. When left and right side EMG signals were grouped by level of recording, a significant difference in activity was found. Subjects who produced the slowest free F/E displayed larger fatigue indexes derived from the EMG signals for some of their back muscles than for other subjects. The flexion/relaxation phenomenon was considered present in a muscle if a level <10% of the maximum signal recorded during extension was detected. The phenomenon was found in >50% of the observations and occurred at a similar angle in each task. Kinematics and several characteristics of the EMG signals of the trunk were statistically independent of the speed of motion.  相似文献   

16.
This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region.  相似文献   

17.

Background

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.

Methods

Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.

Results

Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.

Conclusions

Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.  相似文献   

18.
Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15 lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p < 0.0001 and p = 0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p = 0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15 lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction.  相似文献   

19.
The transversus abdominus muscle (TrA) has been demonstrated to be active prior to rapid movements of the upper and lower limbs. This activity is termed feed forward motivation. The lack of feed-forward activation for TrA has been demonstrated in subjects with low back pain. The measures used for investigation of TrA function have been fine-wire needle EMG. This limits the practical application of TrA study due to the cost and level of specialisation required for this technique. The objective of the current study was to investigate the validity and reliability of using a surface EMG site to replicate the findings for the feed-forward activation of TrA prior to rapid limb movement. A population of healthy, young males (n = 20) were studied and it was found that four of the subjects did not meet feed-forward criteria. These results were shown to be highly reliable after a 2-week period for the TrA/IO site only. The validity of the signal was further investigated using several functional tasks to specifically target muscles of the abdominal region. Using a cross-correlation analysis to evaluate crosstalk from adjacent muscles, it was concluded that the signal representing TrA/IO accurately demonstrates the functional activity of the muscle. This study has demonstrated a viable surface EMG method to evaluate the feed-forward activation of TrA/IO prior to rapid limb movement. This may lead to opportunities for the clinical application of this method. It was also a finding of this study that four asymptomatic subjects did not pre-activate, therefore providing a rationale for future prospective investigations on whether the lack of TrA/IO feed-forward activation is a cause or an effect of low back pain.  相似文献   

20.
The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号