首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abundance prediction of aquatic insects (Ephemeroptera, Plecoptera, Trichoptera = EPT) based on environmental variables (precipitation, discharge, temperature) and abundance of the parent generation with Artificial Neural Nets (ANN) was carried out successfully. A general model for all species does not exist. Easy to understand models for individual species were restricted to stream sections with a characteristic set of variables. The amount of zero-values in the data did not affect the models. Transfer of one model to other stream sections resulted in a decrease of the determination coefficient B. Sufficient models for populations that have larvae in the stream all the year round required more information than for species with a diapause. All scaling options used decreased prediction quality. Long term mean values of variables and the deviation of actual from long term data were the best predictors, indicating a successful temporal link between seasonal variables and univoltine life cycles of most species tested. Prediction of monthly emergence in individual years was adequate with determination coefficients > 0.8 for five, and < 0.5 for only two out of ten years.  相似文献   

2.
A forest headwater stream was manipulated (logging road-crossing amended) to induce fine sediment inputs. Benthic inorganic sediment concentrations .particles 1.5–250 μm increased from a 2-year pre-disturbance average of about 800 g m–2 to over 5000 g m–2 that persisted for 3 years. Aquatic insect communities were examined over the 5-year study period in the manipulated and nearby reference streams. Overall, the effects of the fine sediment increases on aquatic insect communities were minimal. There were no significant effects of sedimentation on total aquatic insect abundance or biomass. An index of multivariate dispersion gave no evidence of community stress at the manipulated site. Multivariate ordination plots and time trends among univariate community metrics indicated only subtle changes in community structure. Among the univariate metrics (16 time series analyses in total), six gave evidence of a sediment impact on aquatic insect communities. Of those, the clearest indications of an effect were small reductions in diversity and richness of spring communities. These resulted from a significant decline in the proportion of spring shredders, accompanied by a significant increase in the percent Chironomidae. This large-scale experimental approach integrated the realism of a whole-stream study with the control of a manipulative study by including pre-manipulation measurements and excluding other confounding catchment disturbances. In this regard, it may provide a more realistic measure of benthic community level responses to sedimentation in streams at a magnitude associated with logging activity than many previous studies.  相似文献   

3.
An experimental system used to determine microhabitat current velocity and microhabitat selection by aquatic insects is described. The experimental system includes a microvelocity probe and a hydraulically calibrated artificial substrate. A thermistor velocity probe detects flow velocities to 0.5 m s–1 near the surface of substrates at locations inhabited by aquatic insects. The artificial substrate was designed to provide two major habitat types, highly turbulent vortex areas and regions with unidirectional, near laminar flow. Substrate calibration and microhabitat characteristics of the substrates are demonstrated. Experimental studies of Simulium sp. location on substrates indicated that while simuliid larvae are characteristic of lotic, erosional habitats, actual microhabitats selected are governed by substantially lower flow velocity.  相似文献   

4.
5.
Benthic macroinvertebrates are the most commonly suggested group of organisms for freshwater biomonitoring and have been extensively studied in temperate areas. On the other hand, the methodology and theoretical background of biomonitoring have not yet been sufficiently adapted to tropical aquatic environments. The main focus of this study was the testing and comparison of two different collection methods in order to determine water quality and possible anthropogenic influences on the river Dos Novillos, Limón, Costa Rica. For the first method, aquatic invertebrates were collected for 120 min with a strainer, from different microhabitats, picked from the substrate and preserved directly in the field with 70% alcohol. For the second method, organic and inorganic materials, including benthic organisms, were gathered from different microhabitats with a D-shaped net for 10 min, with separation and sorting done in the laboratory. Results from five sampling campaigns showed that each sampling method differed in the composition of the fauna collected (Sørensen similarity index = 80%), although water quality categories obtained from the BMWP-CR index showed no differences between the two methods. The advantages and disadvantages of each method are discussed, and according to the results obtained from this study, further testing for an adequate methodology in tropical rivers is still necessary.  相似文献   

6.
Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density‐dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple‐prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey.  相似文献   

7.
In this study we compared the biodiversity of five waterbody types (ditches, lakes, ponds, rivers and streams) within an agricultural study area in lowland England to assess their relative contribution to the plant and macroinvertebrate species richness and rarity of the region. We used a Geographical Information System (GIS) to compare the catchment areas and landuse composition for each of these waterbody types to assess the feasibility of deintensifying land to levels identified in the literature as acceptable for aquatic biota. Ponds supported the highest number of species and had the highest index of species rarity across the study area. Catchment areas associated with the different waterbody types differed significantly, with rivers having the largest average catchment sizes and ponds the smallest. The important contribution made to regional aquatic biodiversity by small waterbodies and in particular ponds, combined with their characteristically small catchment areas, means that they are amongst the most valuable, and potentially amongst the easiest, of waterbody types to protect. Given the limited area of land that may be available for the protection of aquatic biodiversity in agricultural landscapes, the deintensification of such small catchments (which can be termed microcatchments) could be an important addition to the measures used to protect aquatic biodiversity, enabling ‘pockets’ of high aquatic biodiversity to occur within working agricultural landscapes. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

8.
1. Temperature and oxygen are recognised as the main drivers of altitudinal limits of species distributions. However, the two factors are linked, and both decrease with altitude, why their effects are difficult to disentangle. 2. This was experimentally addressed using aquatic macroinvertebrates; larvae of Andesiops (Ephemeroptera), Claudioperla, (Plecoptera), Scirtes (Coleoptera) and Anomalocosmoecus (Trichoptera), and the amphipod Hyalella in an Ecuadorian glacier‐fed stream (4100–4500 m a.s.l.). The following were performed: (i) quantitative benthic sampling at three sites to determine altitudinal patterns in population densities, (ii) transplants of the five taxa upstream of their natural altitudinal limit to test the short‐term (14 days) effect on survival, and (iii) in situ experiments of locomotory activity as a proxy for animal response to relatively small differences in temperature (5 °C vs. 10 °C) and oxygen saturation (55% vs. 62%). 3. The transplant experiment reduced survival to a varying degree among taxa, but Claudioperla survived well at a site where it did not naturally occur. In the in situ experiment, Scirtes and Hyalella decreased their activity at lower oxygen saturation, whereas Andesiops and Anomalocosmoecus did so at a low temperature. The decrease in activity from a high to a low temperature and oxygen for the five taxa was significantly correlated with their mortality in the transplant experiment. 4. Together the present experiments indicate that even relatively small differences in temperature and oxygen may produce effects explaining ecological patterns, and depending on the taxon, either water temperature or oxygen saturation, without clear interacting effects, are important drivers of altitudinal limits.  相似文献   

9.
To determine how nutritional indices for insects fed leaves are affected by the experimental conditions and the physiology of the plant material, we used larvae of the buckmoth, Hemileuca lucina Hy. Ed. (Saturniidae) and their hostplant Spiraea latifolia Ait. Bork (Rosaceae). Under experimental conditions identical to those used to determine larval nutritional indices, we found that the age of leaves (new versus mature) significantly affected their metabolism and water loss, but simulated herbivory did not directly affect leaf metabolism. Over a 6-day test, nitrogen concentration showed an initial increase followed by a gradual decline, and was higher in new leaves compared to mature leaves. New leaves increased in protein concentration and then gradually returned to the initial level, whereas mature leaves changed little over the 6-day test. These changes in percent nitrogen and protein may largely reflect the disproportional changes in non-nitrogenous materials. Solitary and grouped larvae had similar growth rates on new leaves, but they differed on mature leaves. Deliberate manipulation of larvae during the course of an experiment significantly reduced relative growth rates by increasing duration of the stadium rather than by decreasing biomass gained. Two methods of estimating larval gut contents at mid-stadium were compared: weight of frass produced and weight of digestive tract and contents. After the end of the 4-day test period used to determine nutritional indices, the digestive tracts with food accounted for 10.8% of the larval dry weight. Larval frass produced in 24 h after the end of the test period comprised 9.3% of the larval dry weight. Correction factors for plant metabolism changed nutritional indices by 1 to 8%, while those for larval gut contents altered indices by 2 to 15%.  相似文献   

10.
The Cox model—which remains the first choice for analyzing time-to-event data, even for large data sets—relies on the proportional hazards (PH) assumption. When survival data arrive sequentially in chunks, a fast and minimally storage intensive approach to test the PH assumption is desirable. We propose an online updating approach that updates the standard test statistic as each new block of data becomes available and greatly lightens the computational burden. Under the null hypothesis of PH, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data blocks pooled into one data set. In simulation studies, the test and its variant based on most recent data blocks maintain their sizes when the PH assumption holds and have substantial power to detect different violations of the PH assumption. We also show in simulation that our approach can be used successfully with “big data” that exceed a single computer's computational resources. The approach is illustrated with the survival analysis of patients with lymphoma cancer from the Surveillance, Epidemiology, and End Results Program. The proposed test promptly identified deviation from the PH assumption, which was not captured by the test based on the entire data.  相似文献   

11.
The main objective of this study was to assess organic matter (OM) and methylmercury (MeHg) sources for freshwater littoral macroinvertebrate primary consumers. The carbon and nitrogen stable isotope ratios (δ13C, δ15N) of sources (epiphytes, macrophytes, suspended particulate matter _SPM) and of macroinvertebrate consumers were measured in a fluvial lake with extensive macrophyte beds (emergent and submerged). To determine the relative contribution of each OM source to macroinvertebrate diets we used the IsoSource model that examines all possible combinations of solutions for each source. Total and MeHg concentrations of consumers were also measured. Results show that epiphytes and macrophytes are dominant in the diet of macroinvertebrates, especially in early summer (July). In mid-summer (August), SPM constitutes a non-negligible OM source to the primary consumers. Hg concentrations were higher in epiphytes than in the other OM sources. The proportion of epiphytes in macroinvertebrate diet was positively correlated with the percentage of MeHg in their tissues. There was no relationship between SPM assimilation and Hg concentration in macroinvertebrate consumers. These results suggest that epiphytes and macrophytes constitute the main pathway of Hg bioaccumulation in littoral food webs.
Fabien CremonaEmail: Email:
  相似文献   

12.
1. We quantified geitonogamous selfing in Echium vulgare , a self-compatible, bumble-bee pollinated plant. A maximum estimate of selfing was determined using a paternity analysis with RAPDs. In the first experiment, bumble-bees visited a sequence of virgin flowers. The percentage selfing increased rapidly from 12% in the first flower visited, up to 50% in the 15th flower visited in the sequence. In the second experiment, when bees visited plants in a natural population, the average selfing of plants increased with the number of open flowers from 0% to maximally 33%.
2. The results obtained in both experiments are consistently lower than predicted by our model on pollen dynamics ( Rademaker, de Jong & Klinkhamer 1997 ). We modified the model on pollen dynamics to link it more to the field situation with observations on flower stage, flower opening and bumble-bee preference, so that the bumble-bees encounter a variable number of pollen grains per flower. We also adjusted the parameters. If less pollen adheres to the bee (25% instead of 50%) after removal from the anthers, or if bees arrive at a plant with more pollen grains (6000 instead of 4448), the predictions of the model in regard to selfing could be improved but were still high compared with the observed selfing rates measured with RAPDs.
3. We suggest that the model is consistent with pollen dynamics in the field. However, post-pollination processes like selective abortion could play a role in E. vulgare .  相似文献   

13.
1. The ‘Field of Dreams Hypothesis’ states ‘if we build it, they will come’, referring to the assumption that if habitats are restored, species will recolonise them. However, the ability of a species to recolonise a restored site will depend not only on the appropriate habitat being present, but also on the ability to get there. This is likely to depend on both the species’ dispersal behaviour and the position of a site in the landscape. 2. Animals with good potential for dispersal are more likely to be able to disperse to newly restored sites. Similarly, sites in lowland streams with limited altitudinal differences between sites may be easier to reach than upstream sites. This is because upstream sites are connected to one another via lowland streams that have different characteristics and therefore may be difficult for animals to traverse. 3. In this paper, genetic data from a range of freshwater species that have been analysed in my laboratory are used to assess the importance of life cycle and position in the landscape (i.e. upland versus lowland streams) on connectivity patterns (and thus recolonisation potential) among populations. 4. In general, contemporary dispersal across catchment boundaries is negligible, except for aquatic insects with an adult flight stage. Dispersal among streams within catchments appears to be more limited than was predicted from knowledge on life histories, except for fish in lowland rivers and streams. 5. As predicted, dispersal of fish, crustaceans and molluscs among streams within catchments is significantly greater in lowland rivers than in upland streams. 6. Overall, these analyses suggest that, with the exception of most insects, and fishes in lowland rivers, natural recolonisation of restored sites is only likely from sites within the same stream. If a species has disappeared from the whole stream, then restoration of habitat alone may not be sufficient for its re‐establishment.  相似文献   

14.
1. We developed empirical models for predicting the release of nutrients [nitrogen (N) and phosphorus (P)] by aquatic metazoans (zooplankton, mussels, benthic macroinvertebrates and fish). 2. The number of species represented in each model ranged from 9 to 74 (n = 40 – 1122), organism dry mass from 1 × 10?5 to 8 × 104 mg and water temperature from ?1.8 to 32 °C for all models. Organisms were from marine and freshwater (both lotic and lentic) environments. 3. Rates and ratios of nutrient excretion were modelled and intra‐ and intertaxon differences in excretion were examined. Rates of N and P excretion were not significantly different between marine and freshwater species within the same taxon (e.g. zooplankton). However, rates of excretion (as a function of organism dry mass and water temperature) were significantly different among different orders of zooplankton, mussels and fish. However, excretion of N was similar among different orders of benthic macroinvertebrates. 4. Detritivorous fish excreted both N and P at rates greater than all other taxa; whereas mussels excreted N and P generally at rates less than other taxa. There were no significant differences in the rate of N and P excretion between zooplankton and fish (i.e. the allometry of N and P excretion was similar between zooplankton and fish). 5. Molar N : P ratios of nutrients excreted increased with increasing organism dry mass for each group of metazoans, except for zooplankton and detritivorous fish (where N : P ratios declined with increasing organism dry mass). Molar N : P ratios in the excretions of aquatic metazoans were generally below the Redfield ratio of 16:1. 6. We examined the influence of variable abundance of zooplankton, benthic macroinvertebrates and fish on assemblage excretion rates. Rates of N and P excretion were calculated by applying our models to metazoan biomass and abundance data over seven consecutive years in two oligotrophic lakes. Rates of N and P excretion (g ha?1 day?1) increased linearly with increasing assemblage biomass (kg ha?1). However, rates of N and P excretion were significantly and negatively correlated with the relative abundance of fish and positively correlated with the relative abundance of zooplankton.  相似文献   

15.
1. The palatability of aquatic macrophytes to the snail Lymnaea stagnalis was investigated in the laboratory. Eight species of macrophyte were selected from habitats that differed in either flood disturbance regime or nutrient status.
2. In a non-choice test, single macrophyte species were offered to individual snails. The average amount of plant dry mass consumed per Lymnaea dry mass ranged from 3.6 ± 1.4 (±SE) to 63.6 ± 13.9 mg g–1 day–1 across plant species. In a choice test, all eight plant species were presented simultaneously to sets of five snails. The average total consumption was 66.1 ± 3.8 mg g–1 day–1 and the maximum average consumption for a single plant was 26.2 ± 3.6 mg g–1 day–1.
3. In both tests, the amount consumed by snails differed significantly between the plant species. The species growing in undisturbed habitats were the least consumed. Habitat nutrient status was unrelated to plant palatability.
4. These results suggest that macrophyte species growing in habitats that are rarely disturbed by floods allocate a greater proportion of their resources to resisting herbivory.  相似文献   

16.
17.
Algal biomass during colonization of polyurethane foam islands (5.1 cm × 7.6 cm × 7.6 cm) was approximated by measuring chlorophyll a levels on islands after exposure periods of 1, 2, 3, 4, and 6 weeks at six locations in a small lake in central Tennessee, USA. Chlorophyll, ash-free dry weight, and concurrent environmental data were collected for two colonization periods: one in late winter and spring (Set 1), a second in summer (Set 2).During Set 1 algal biomass levels, as indicated by chlorophyll a, showed a sharp rise initially, but Set 2 islands exhibited a lag period of 7 to 12 days before a rapid increase in algal biomass was noted. Equilibrium chlorophyll a values were similar for both sets. High levels of phaeopigments were found at Stations 2, 3, and 4 during Set 2 resulting in large corrections in chlorophyll a readings. Ash-free dry weight values increased steadily through each colonization period.A model of biomass accumulation during colonization was constructed postulating three major processes — photosynthesis, respiration, and passive accumulation — which were modulated by three environmental factors — light, temperature, and plankton chlorophyll a levels. For simulations parameter values were taken from the literature where possible. Additional parameter values were set and literature values adjusted when the model was tuned to Set 2 data. A simulation with the tuned model using Set 1 environmental input resulted in a good prediction of equilibrium values, but a misinterpretation of initial values. The discrepancy between model predictions and data was alleviated when the passive accumulation rate was increased demonstrating the dependence of biomass values early in colonization on passive accumulation from the plankton.  相似文献   

18.
19.
The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB.  相似文献   

20.
庄文  陈青  周凤霞 《生态学报》2016,36(18):5956-5966
随着纳米技术产业的高速发展,大量工程纳米颗粒物(Engineering nano-particles,ENPs)被排放到自然水环境中,因此对其进行生态毒性及环境风险的研究尤为迫切。综述了ENPs在水环境中的毒理学机理及理想模式生物筛选的研究进展。目前的研究表明ENPs的毒性作用机制主要包括两方面:一是影响细胞信号通路,二是氧化应激造成基因表达的变化。此外,光催化活性、细胞表面附着、溶解特性、表面特征、赋存形态、溶剂效应及与其他环境污染物的协同作用也是可能的毒性作用机理。模式生物的筛选与确定在纳米生态毒理学研究中极为重要。鱼类作为水环境中普遍存在的脊椎动物,群落庞大,其具有行为端点敏感性高、且在生物毒性实验中存在明显的量效关系等特征,被认为是研究ENPs生态毒理学最适合的水生模式生物。研究表明针对在ENPs影响下的未成年鱼类的行为特征研究比传统的胚胎发育及致死率研究更为有效。无脊椎动物和浮游植物同样在各种水环境中普遍存在,对环境污染物极为敏感,且对有害物质具有显著的富集放大效应,因此作为模式生物也具有一定的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号