首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fang  Xiaolong  Sun  Xiaoyuan  Yang  Xiangdong  Li  Qing  Lin  Chunjing  Xu  Jie  Gong  Wenjun  Wang  Yifan  Liu  Lu  Zhao  Limei  Liu  Baohui  Qin  Jun  Zhang  Mengchen  Zhang  Chunbao  Kong  Fanjiang  Li  Meina 《中国科学:生命科学英文版》2021,64(9):1533-1545
Male sterility is an essential trait in hybrid seed production, especially for monoclinous and autogamous food crops. Soybean male-sterile ms1 mutant has been known for more than 50 years and could be instrumental in making hybrid seeds. However, the gene responsible for the male-sterile phenotype has remained unknown. Here, we report the map-based cloning and characterization of the MS1 gene in soybean. MS1 encodes a kinesin protein and localizes to the nucleus, where it is required for the male meiotic cytokinesis after telophase Ⅱ. We further substantiated that MS1 colocalizes with microtubules and is essential for cell plate formation in soybean male gametogenesis through immunostaining. Both ms1 and CRISPR/Cas9 knockout mutants show complete male sterility but are otherwise phenotypically normal, making them perfect tools for producing hybrid seeds.The identification of MS1 has the practical potential for assembling the sterility system and speeding up hybrid soybean breeding.  相似文献   

2.
 Genetic and cytological studies were conducted with a new male-sterile, female-fertile soybean [Glycine max (L.) Merr.] mutant. This mutant was completely male sterile and was inherited as a single-recessive gene. No differences in female or male gamete transmission of the recessive allele were observed between reciprocal cross-pollinations in the F1 or F2 generations. This mutant was not allelic to any previously identified soybean genic male-sterile mutants: ms1, ms2, ms3, ms4, ms5, or ms6. No linkage was detected between sterility and flower color (W1 locus), or between sterility and pubescence color (T1 locus). Light microscopic and cytological observations of microsporogenesis in fertile and sterile anthers were conducted. The structure of microspore mother cells (MMC) in male-sterile plants was identical to the MMCs in male-fertile plants. Enzyme extraction analyses showed that there was no callase activity in male-sterile anthers, and this suggests that sterility was caused by retention of the callose walls, which normally are degraded around tetrads at the late tetrad stage. The tapetum from male-sterile anthers also showed abnormalities at the tetrad stage and later stages, which were expressed by an unusual formation of vacuoles, and by accumulation of densely staining material. At maturity, anthers from sterile plants were devoid of pollen grains. Received: 13 May 1996 / Revision accepted: 19 August 1996  相似文献   

3.
4.
There is a positive correlation between fertility and yield, and the decrease of fertility is bound to a greatly reduced crop yield. Male sterile mutants can be used in hybrid rice. Therefore, rice male sterility has an important value in research and application, and the study of related mutants is also very vital. The mutant ms10 (male sterile 10) reported in this study was induced by ethyl methane sulfonate (EMS) in the indica maintainer line Xinong 1B. There was no significant difference between the ms10 and wild type in the vegetative growth stage. However, in the reproductive growth stage, ms10 showed that the plant became shorter, the anther became smaller and the color became lighter, and finally showed the phenotype of male sterility in comparison to the wild type. I2-KI staining showed that the pollen was malformed and only a little was active. Scanning electron microscopy observation showed that the exine waxy layer of the ms10 anther decreased, suggesting that the protective effect on pollen was decreased. This may be one of the reasons leading to the phenotype of male sterility. Finally, the pollen showed shrinkage and collapsed, and the structure of germinating pore cover disappeared. This may be the result of sterility. Genetic analysis showed that the male sterility phenotype of the mutant was controlled by a single recessive nuclear gene. MS10 was mapped between the molecular markers IND37 and IND51 on chromosome 4, with a physical distance of 178.6 kb. These results lay the foundation for further studies on MS10.  相似文献   

5.
6.
7.
经EMS诱变野生型拟南芥(Arabidopsis thaliana)群体筛选得到一株雄性不育突变体ms1142,突变体的果荚短小,不含种子。细胞学观察和扫描电镜结果表明,突变体花药发育过程中,花药中小孢子外壁异常、破裂,最后没有花粉形成。遗传分析表明,该突变体为隐性单核基因突变所致;利用图位克隆的方法将MS1142基因定位于第1条染色体的BAC克隆F16P17上44kb区间内,目前尚未见该区间内有雄性不育基因的报道。以上结果结合生物信息学分析表明,MS1142是一个新的调控花药发育的关键基因。该工作为花药发育关键基因MS1142的克隆及功能分析奠定了基础。  相似文献   

8.
拟南芥雄性不育突变体ms1142的遗传定位与功能分析   总被引:1,自引:0,他引:1  
常玉花  周鹊  杨仲南  张森 《植物学报》2010,45(4):404-410
经EMS诱变野生型拟南芥(Arabidopsis thaliana)群体筛选得到一株雄性不育突变体ms1142, 突变体的果荚短小, 不含种子。细胞学观察和扫描电镜结果表明, 突变体花药发育过程中, 花药中小孢子外壁异常、破裂, 最后没有花粉形成。遗传分析表明, 该突变体为隐性单核基因突变所致; 利用图位克隆的方法将MS1142基因定位于第1条染色体的BAC克隆F16P17上44 kb区间内, 目前尚未见该区间内有雄性不育基因的报道。以上结果结合生物信息学分析表明, MS1142是一个新的调控花药发育的关键基因。该工作为花药发育关键基因MS1142的克隆及功能分析奠定了基础。  相似文献   

9.
A comparative study of microsporogenesis in fertile and in male sterile (ms1) soybean plants (Glycine max (L.) Merr.) was conducted by using various microscopic techniques. Once the developmental pattern for fertile microsporogenesis was established, it was compared with the developmental pattern in sterile plants to determine the time of microsporogenesis breakdown. Sterility of the ms1 mutant is caused by failure of cytokinesis after telophase II. The four nuclei resulting from meiosis become enclosed in a single-celled structure, termed a coenocytic microspore. These microspores develop a pollen-like wall and become engorged with lipid and starch reserves. Coenocytic microspores usually degenerate after engorgement. This study of fertile and sterile (ms1) microsporogenesis has shown that nuclear and cytoplasmic events must occur at precise times for the successful development of 1n pollen grains from 2n sporogenous cells. Any disruption during this process leads to sterility.  相似文献   

10.
In this paper, we describe the cloning of the MS5 gene, a gene essential for male fertility in Arabidopsis . We previously defined the MS5 locus by characterizing an EMS-induced allele, ms5–1 . We identified a new allele of MS5 ( ms5–2 ) that was T-DNA-generated and used the T-DNA tag to clone the gene. Sequencing of mutant and wild-type alleles together with complementation of the ms5–1 mutant phenotype with a wild-type genomic clone confirmed the identity of the gene. Differences between the phenotypes of the two mutant alleles could be attributed to differences in mutant gene structure. The semi-dominant and dominant negative phenotypes of the ms5–2 mutant probably result from production of a truncated polypeptide. An unknown locus in Landsberg erecta can counteract the dominant negative phenotype of ms5–2 . Mutations in MS5 cause the formation of ‘polyads’– tetrads with more than four pools of chromosomes after male meiosis. Similarities between the MS5 sequence and that of a number of proteins were found; two that may be significant were with a synaptonemal complex protein and with a regulatory subunit of a cyclin-dependent kinase. The MS5 gene is a member of a small gene family highly conserved amongst plant species.  相似文献   

11.
12.
13.
Theory predicts that homoploid hybrid speciation will be facilitated by selfing, yet most well-documented hybrid species are outcrossers. One possible explanation for this puzzle is that conditions in hybrid populations may favor selfing, even in otherwise outcrossing species. For example, in self-incompatible plants, mixtures of self and interspecific pollen often induce selfing. Here, we examine patterns of mating in three hybrid zones and four “pure” populations of Helianthus annuus and H. petiolaris, wild, self-incompatible sunflower species that are thought to have parented three homoploid hybrid species. Fourteen to 16 maternal families from each pure population and 44–46 maternal families from each hybrid zone were analyzed for seven polymorphic isozyme loci. Maximum-likelihood (ML) methods were used to estimate multilocus outcrossing rates (Tm) and hybridization frequencies for each maternal family, each phenotypic group within each hybrid zone (annuus-like, hybrid, and petiolaris-like), and each population. As predicted for self-incompatible species, all four parental populations have outcrossing rate ML estimates of 1.0. Within the hybrid zones, outcrossing rates were lowest in the H. annuus–like fraction of the population (0.73, 0.72, and 0.74 in the three hybrid zones, respectively), largely intermediate in the H. petiolaris–like group (0.94, 0.90, and 0.94), and highest in the hybrid group (0.97, 0.93, and 0.97). Although outcrossing rates are lower in hybrid zones than in pure populations, it is unlikely that the observed decrease facilitates hybrid speciation because outcrossing rates in the critical hybrid fraction of the population do not differ significantly from 1.0. Dividing the outcrossed pollen pool into intraspecific and interspecific components revealed that maternal plants are largely fertilized by conspecific pollen, confirming an important role for pollen competition as a reproductive barrier. Highly sterile hybrid plants do not appear to discriminate between parental species pollen, but hybrids with higher fertility tend to be fertilized by pollen from the parental group they resemble genetically. Thus, gametic selection leads to substantial assortative mating in these hybrid zones.  相似文献   

14.
玉米雄性不育材料是一种宝贵的种质资源,不育基因的遗传分析与定位研究对玉米分子育种和杂种优势利用具有重要价值。通过对从美国引进的玉米雄性不育突变体材料ms14进行雄花育性鉴定和花药I2-KI染色,表明该突变体是无花粉型雄性不育;通过不育突变体ms14与正常自交系郑58、昌7-2杂交获得F1,然后自交构建两个F2遗传分离群体(ms14×郑58和ms14×昌7-2),并进行雄花育性调查、数据统计和遗传分析,发现可育株数与不育株数的分离比是3∶1,表明该突变体由隐性单基因控制;通过SSR等分子标记与不育位点的连锁分析,将ms14基因定位在玉米第1染色体的SSR标记umc2025和umc1676之间,遗传距离分别是2.2cM和0.3cM。对玉米不育基因ms14的遗传分析和初步定位,为该基因的精细定位和克隆、不育机理的解析及其产业化应用奠定了基础。  相似文献   

15.
Pollen development is disturbed in the microspore development stage of the double-recessive nuclear male-sterile line ms5ms6 (Gossypium hirsutum L.). This study aimed to identify differentially expressed anther proteins and their potential roles in pollen development and male sterility. We compared the proteomes of sterile and fertile anthers of the double recessive nuclear male-sterile line ms5ms6. Approximately 1,390 protein spots were detected by two-dimensional differential gel electrophoresis. Proteins with altered accumulation levels in sterile anthers compared with fertile anthers were identified by mass spectrometry and the NCBInr and Viridiplantae EST databases. Down-regulated proteins in the sterile anthers included cytosolic ascorbate peroxidase 1 and glutaminyl-tRNA synthetase (glutamine-tRNA ligase). Several carbohydrate metabolism- and photosynthesis-related enzymes were also present at lower levels in the mutant anthers. By contrast, ATP-dependent RNA helicase eIF4A-13, NADH dehydrogenase subunit 1, enolase, gibberellin 20-oxidase, gibberellin 3-hydroxylase 1, alcohol dehydrogenase 2d, 3-ketoacyl-CoA synthase, and trehalose 6-phosphate synthase were expressed at higher levels in sterile anthers than in fertile anthers. The regulation of upland cotton pollen development involves a complex network of differentially expressed genes. This study provides the foundation for future investigations of gene function in upland cotton pollen development and male sterility.  相似文献   

16.
Plant male reproductive development is a complex biological process, but the underlying mechanism is not well understood. Here, we characterized a rice (Oryza sativa L.) male sterile mutant. Based on map‐based cloning and sequence analysis, we identified a 1,459‐bp deletion in an adenosine triphosphate (ATP)‐binding cassette (ABC) transporter gene, OsABCG15, causing abnormal anthers and male sterility. Therefore, we named this mutant osabcg15. Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis II stage) to stage 10 (late microspore stage). Two genes CYP704B2 and WDA1, involved in the biosynthesis of very‐long‐chain fatty acids for the establishment of the anther cuticle and pollen exine, were downregulated in osabcg15 mutant, suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules. Consistently, histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration, leading to rapid degredation of young microspores. The results suggest that OsABCG15 plays a critical role in exine formation and pollen development, similar to the homologous gene of AtABCG26 in Arabidopsis. This work is helpful to understand the regulatory network in rice anther development.  相似文献   

17.
在长春蒲公英(Taraxacum junpeianum Kitam.)株群中发现雄性不育现象,为研究其败育机理及特点,探寻其不育基因,采用形态观察法、石蜡切片技术和染色体压片法,对长春蒲公英野生型及其雄性不育株的花药发育过程和花粉母细胞减数分裂过程进行了观察。结果表明:(1)长春蒲公英雄性不育株花药中部发红、干瘪、无花粉散出。与野生型比较,雄性不育株雄蕊更短,子房更窄,种子形态更加狭长;(2)长春蒲公英雄性不育株败育时期为四分体到单核小孢子前期,败育方式为小孢子自身异常发育,绒毡层异常分解,互相粘连败育;(3)长春蒲公英雄性不育株花粉母细胞减数分裂二分体时期出现落后微核,随后产生极少四分体,并且四分体产生大量染色体桥,小孢子营养物质流失,彻底败育。因此,长春蒲公英雄性不育株败育彻底、稳定,并且有种的特点。小孢子自身异常发育和绒毡层异常分解是导致败育的主要原因。  相似文献   

18.
We report a novel cytoplasmic male sterility (CMS) system in Brassica juncea (oilseed mustard) which could be used for production of hybrid seed in the crop. A male sterile plant identified in a microspore derived doubled haploid population of re-synthesized B. napus line ISN 706 was found to be a CMS as the trait was inherited from the female parent. This CMS, designated ‘126-1’, was subsequently transferred to ten different B. juncea varieties and lines through inter-specific crosses followed by recurrent backcrossing. The F1s of inter-specific crosses were invariably partially fertile, but irrespective of the variety/line used, the recipient lines became progressively male sterile over five to seven generations and could be maintained by crossing the male sterile lines with their normal counterparts. The male sterile lines were found to be stable for the trait under both long and short day conditions. CMS lines when crossed with lines other than the respective maintainer line were restored for fertility, implying that any variety could act as a restorer for ‘126-1’ cytoplasm in B. juncea. These unique features in maintenance and restoration of CMS lines coupled with near normal floral morphology of the CMS lines have allowed the use of ‘126-1’ cytoplasm for hybrid seed production. The uniqueness of ‘126-1’ has been further established by Southern hybridization with mitochondrial DNA probes and by a histological study of the development of male sterile anthers.  相似文献   

19.
The effects of a nuclear male-sterile mutant (ms2) of soybean, Glycine max (L.) Merr., on anther development were analyzed by means of light- and electron-microscopy. The structure of microspore mother cells (MMCs) in male-sterile plants was identical to that of male-fertile plants. Meiosis was completed, and tetrads of microspores formed. Microspores degenerated after the deposition of primexine and probacullae. The sheath of callose surrounding microspores did not dissolve. No structural abnormalities of the microspores were detected before the onset of degeneration. The tapetal and anther wall layers were characterized by aberrant development. Tapetal abnormalities included premature vacuolation, a persistent inner tangential cell wall, failure to differentiate normal concentrations of endoplasmic reticulum and dictyosomes, disruption of plastids, and premature degeneration. Malfunction of the tapetal layer preceded, and may have induced, microspore degeneration. Gross anther morphology was not influenced until advanced stages of development.  相似文献   

20.
The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male‐sterile lines were potentially non‐transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号