首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Factors governing the dynamics between woody and herbaceous vegetation in the savanna are of ecological interest since they determine ecosystem productivity and stability. Field measurements were conducted in a humid savanna in the Lambwe valley, western Kenya, to compare CO2 exchange of the herbaceous vegetation and trees and its regulation. Soil characteristics and root distribution patterns under tree canopies and in the open locations dominated by the herbaceous vegetation were profiled in 1-m-deep soil layers. Soil water content (SWC) was measured at 30 cm depth both in the herbaceous vegetation and also under the tree canopies. The mean maximum monthly gross primary production (GPPmax) in the herbaceous vegetation was determined from chamber measurements, while daily GPP (GPPday) in both the grass and tree canopies was simulated using the PIXGRO model. The highest mean GPPmax in the herbaceous vegetation was 26.2 ± 3.7 μmol m-2 s-1 during April. Seasonal fluctuations of GPP in the herbaceous vegetation were explained by soil water availability (R 2 = 0.78) within the upper 30-cm soil profile. Seasonal GPPday fluctuations were larger (between 1 gC m-2 d-1 and 10 gC m-2 d-1) in the herbaceous vegetation compared to the trees, which fluctuated around 4.3 ± 0.3 gC m-2 d-1 throughout most of the measurement period. Daily tree canopy transpiration (Ec), canopy conductance (Gc), and GPPday were decoupled from SWC in the top 30-cm soil profile. On average, ecosystem GPPday (mean of tree and herbaceous vegetation) was 14.3 ± 1.2 gC m-2 d-1 during the wet period and 6.1 ± 0.9 gC m-2 d-1 during drought. Differences between the herbaceous and tree canopy responses were attributed to soil moisture availability.  相似文献   

2.
Severe drought events increasingly affect forests worldwide, but little is known about their long-term effects at the ecosystem level. Competition between trees and herbs (‘overstorey–understorey competition’) for soil water can reduce tree growth and regeneration success and may thereby alter forest structure and composition. However, these effects are typically ignored in modelling studies. To test the long-term impact of water competition by the herbaceous understorey on forest dynamics, we incorporated this process in the dynamic forest landscape model LandClim. Simulations were performed both with and without understorey under current and future climate scenarios (RCP4.5 and RCP8.5) in a drought-prone inner-Alpine valley in Switzerland. Under current climate, herbaceous understorey reduced tree regeneration biomass by up to 51%, particularly in drought-prone landscape positions (i.e., south-facing, low-elevation slopes), where it also caused a shift in forest composition towards drought-tolerant tree species (for example, Quercus pubescens). For adult trees, the understorey had a minor effect on growth. Under future climate change scenarios, increasing drought frequency and intensity resulted in large-scale mortality of canopy trees, which intensified the competitive interaction between the understorey and tree regeneration. At the driest landscape positions, a complete exclusion of tree regeneration and a shift towards an open, savannah-like vegetation occurred. Overall, our results demonstrate that water competition by the herbaceous understorey can cause long-lasting legacy effects on forest structure and composition across drought-prone landscapes, by affecting the vulnerable recruitment phase. Ignoring herbaceous vegetation may thus lead to a strong underestimation of future drought impacts on forests.  相似文献   

3.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

4.

Background and aims

During the recent decades, cork oak (Q. suber) mortality has been increasing in Mediterranean oak woodland endangering the economical and environmental sustainability of the “montado” ecosystem. This fact in combination with climate change and conversion of forestland to pasture may significantly affect the soil-atmosphere greenhouse gases (GHGs) exchange. Our study evaluates the impact of oak trees as compared to pasture on net ecosystem GHG (CH4, N2O, and CO2) exchange as well as the main environmental factors influencing this exchange.

Methods

We used field chamber measurements for the collection of GHGs under three different conditions: 1) open area (OA), 2) under tree canopy area (UC) and 3) improved pasture (IP). Experiments were done under typical Mediterranean climate at central Portugal in 2010 and 2011.

Results

The UC had higher nitrification potential, soil C/N ratio, electrical conductivity, litter input and soil organic matter (SOM) than OA and IP. SOM positively correlated with soil CH4 and N2O fluxes but not with soil CO2 respiration rates. Soil water content (SWC) drives both CH4 and N2O fluxes. Under certain conditions, when SWC reached a threshold (7 % for CH4 and 3 % for N2O) the result was net uptake and that net uptake increased with SWC. This was the case for the UC and OA. Conversely, for the IP soil water content above 4 % promoted net CH4 release.

Conclusions

Our results show that cork oak influences soil properties and consequently GHGs fluxes. In the UC the input of litter for SOM together with soil moisture, favoured microbiological activity and related GHGs fluxes. Soil temperature is a secondary factor in the studied conditions. Our results also emphasized the potential impact posed by decreased cork oak tree density in the functioning of the “montado” ecosystem.  相似文献   

5.
Indirect facilitation by shrubs has been suggested as a cost-effective way of regenerating oaks in forests of conservation interest. In this study, we tested whether shrubs can enhance growth in pedunculate oak (Quercus robur) by suppressing herbaceous competitors. We studied interactions between young oaks, shrubs, and/or herbaceous vegetation in an open-field experiment, in southern Sweden, over the first 3 years after planting. Oak saplings were grown in four competition treatments: no competing vegetation; with herbaceous vegetation; with shrubs; and with both herbaceous vegetation and shrubs. Competition from shrubs and herbaceous vegetation both reduced stem diameter and biomass accumulation, but they affected biomass partitioning differently. Saplings grown with competition from shrubs partitioned biomass primarily into height growth, while those saplings exposed to competition from herbaceous vegetation invested a relatively higher proportion in root growth. Competition between shrubs and herbaceous vegetation reduced the above-ground biomass of the herbaceous vegetation, resulting in an indirect facilitative effect for the oaks during the first 2 years after planting. However, during the third year, shrubs had a negative effect on biomass accumulation. In summary, results from this study suggest that shrubs indirectly facilitate biomass accumulation of oak saplings by suppressing herbaceous vegetation, possibly by reducing competition for below-ground resources. However, owing to the relatively short duration of positive net outcome for the oak, we recommend that a longer-term assessment of the interaction between oak regeneration and neighboring shrubs be made before the outcome of this study is applied to practical forestry.  相似文献   

6.
López-Pintor  A.  Espigares  T.  Rey Benayas  J.M. 《Plant Ecology》2003,167(1):107-116
Retama sphaerocarpa is a leguminous shrub whose important role in the semi-arid regions of south-eastern Spain has already been assessed: shrub canopies reduce light intensity, and thus evapotranspiration; also their extensive radical system take water and nutrients from great volumes of soil, concentrating them in the understorey. Consequently, subcanopy vegetation benefits from these facilitation processes, increasing its productivity. However, these shrublands have been rarely studied at a broader scale, i.e. as a savannah-like system composed of a variable number of shrubs scattered in a herbaceous matrix. As the microenvironmental conditions associated to the understorey are rather different from those of the open spaces among shrubs, species composition of the herbaceous matrix is expected to change accordingly. Thus, R. sphaerocarpa would be an important and still unknown source of spatial heterogeneity to the system. Our main purpose was to evaluate, through the soil seed bank, the heterogeneity in the herbaceous community induced by this shrub species. Soil samples were collected around adult shrubs from three positions relative to the canopy: near the centre of the shrubs, at the edge of the understorey, and completely outside the canopy. Floristic composition was evaluated by germination under greenhouse conditions. The results show that each position has a different floristic composition, characterised by a group of different species. The herbaceous species associated with the external position have functional traits which enable them to resist water stress and herbivore pressure, such as hairs, CAM metabolism, early flowering, horizontal growth or tiny stature. The species associated with the central position lack those traits, and are more competitive in more mesic environments, rich in nitrogen. The lowest number of seedlings and species was found in the internal position, suggesting that in our study the facilitation process may have less importance for community dynamics due to less stressful environmental conditions.  相似文献   

7.
Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long‐term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4‐grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3‐grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4–7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N‐fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire‐resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light‐demanding grasses and forbs.  相似文献   

8.
Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.  相似文献   

9.
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest–woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest–woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.  相似文献   

10.
Aim Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness–productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location We analysed 231 plots ranging from 34.0° to 48.3° N latitude and from 75.0° to 124.2° W longitude in the United States. Methods We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light‐blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species richness is under multivariate control.  相似文献   

11.
To date the implications of greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on soil and vegetation carbon and water fluxes in the understorey of a Mediterranean oak woodland in response to increasing precipitation variability, with an extension of the dry period between precipitation events from 3 to 6 weeks, without altering total annual precipitation inputs. With prolonged dry periods soil moisture did breach the stress thresholds for ecosystem processes, which led to short-term treatment differences in photosynthesis, but not in system carbon losses, with subsequent short-term decreases in net ecosystem exchange. Independent of treatment, irrigation events rapidly increased carbon and water fluxes. However, contradicting the predictions drawn from the ‘bucket model’, over the course of the growing season no all-over treatment differences were found in system assimilation and respiration, nor in evapotranspiration and ecosystem water use efficiency. This lack of responsiveness is attributed to the ecosystem’s resilience to low soil moisture during the growing season of the herbaceous understorey, with temperature rather than soil moisture controlling key ecosystem processes. Moreover, severe nitrogen limitation of the studied ecosystem may explain the lack of moisture effects on net system carbon dynamics. Thus, although the bucket model predicts changes in soil water dynamics with increasing precipitation variability, ecosystem responses to more extreme precipitation regimes may be influenced by additional factors, such as inter-annual variability in nutrient availability.  相似文献   

12.
Many studies have indicated relationships between individual species, but none have related combinations of overstory variables to understory herbaceous vegetation in a Ponderosa pine/Gambel oak ecosystem. Our objective was to determine not only the general relationships between the two sets of variables, but also identify the hyghest contributing variables. We used canonical correlation analysis to relate overstory variables (canopy cover, basal cover and density) to herbaceous vegetation cover variables. Canopy, basal, and ground cover were measured by the line intercept method using a 12.2 m tape as a sample unit. Tree density was measured by the Point-Center-Quarter method. The analysis was made with selected overstory variables and 5 understory herbaceous cover variables. This analysis revealed a significant canonical correlation between the two canonical variables (r=0.69). The analysis showed that among herbaceous cover variables, Oregon grape, Kentucky bluegrass, sedge, and foxtail barley; and among overstory variables, the density and the basal cover of Ponderosa pine indicated the highest positive contribution to the correlation of the two linear combinations while the density and canopy of Gambel oak negatively affected the canonical correlation.  相似文献   

13.
Rising atmospheric [CO2] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO2] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO2 interactions. We use repeat near‐surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO2] (eCO2) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south‐eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (<0.1 mm?3) reducing productivity. However, eCO2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO2 to offset these changes.  相似文献   

14.
Pinus halepensis has been extensively planted in semi-arid areas throughout the world. This has often led to slow-growth stands that: a) suffer from insect plagues, b) promote nutrient depletion and c) fail to promote the recovery of native vegetation. The introduction of native late-successional shrubs in these stands could stimulate successional processes, improve soil conditions and enhance their resilience against disturbances. The main objective of this study was to evaluate the mechanisms underlying the interaction between Pinus and the native late-successional shrub Pistacia lentiscus in a semi-arid plantation. By using manipulative field and laboratory experiments, we evaluated direct (competition for soil resources and allelopathic effects) and indirect (competition with herbaceous understorey) interactions between Pinus and Pistacia . We found no effect of Pinus litter and root exudates on Pistacia growth. In the field, Pistacia seedlings planted under the canopy of Pinus showed higher survival than those planted in open areas with sparse vegetation. Girdling of Pinus trees did not affect the performance of planted Pistacia seedlings, but suppression of the herbaceous understorey significantly enhanced both survival and physiological status of Pistacia seedlings planted under the canopy of Pinus . The magnitude of the interference by herbaceous understorey was considerably higher than that by Pinus . Our results provide evidence that a negative indirect interaction between Pinus and Pistacia , mediated by the herbaceous understorey, is taking place in the afforestation studied, and can help to explain the low rates of colonisation of late-successional woody shrubs typically observed in semi-arid Pinus halepensis plantations.  相似文献   

15.
Fire suppression has altered the uplands of northern Mississippi (U.S.A.). Once blanketed by open oak woodlands, this region is now experiencing mesophytic tree invasion, canopy closure, reduced oak regeneration, and herbaceous understory loss. In an attempt to reestablish historical conditions, experimental restoration was initiated through thinning and burning treatments. Our study, part of a comprehensive monitoring effort, is the first to examine the impact of oak woodland restoration on the spider community and associated habitat structure. Samples measuring a variety of environmental variables and utilizing an array of spider collecting techniques were taken within four habitats located at the restoration site: fire‐suppressed forest, moderately treated forest, intensely treated forest, and old field. Two main conclusions resulted from this study. (1) Open‐habitat specialists responded positively to increased canopy openness regardless of the availability of herbaceous vegetation. (2) Woodland restoration increased spider diversity, perhaps through the formation of diverse habitat structure and/or by altering species dominance patterns. A rise in open‐habitat specialist diversity was observed as treatment intensity increased, with no compensatory reduction in the diversity of forest specialists. What remains to be seen is whether the continued transition to open woodland habitat will result in losses of forest specialist species. More aggressive overstory tree thinning is currently being administered to encourage the growth of herbaceous grasses and forbs, which will permit future tests of a hypothesized decline in forest specialists.  相似文献   

16.
We studied acclimation patterns in leaf dry mass per area (MA), nitrogen (NA) and chlorophyll (ζA) content per area, and chlorophyll to nitrogen ratio (ζ/N) along vertical light gradients in natural temperate mixed herbaceous canopy and deciduous tree canopy. In the deciduous tree canopy, all leaves are formed at approximately the same time, and the light gradient during the rest of the growing season reflects the differences in light availability during leaf development, whereas in the herbaceous canopy, leaf production continues during most of the growing season and major changes in light conditions occur after leaf maturation. MA and NA increased strongly with increasing current light availability (ID) in the tree canopy. In the herbaceous canopy, MA and NA were generally unrelated to ID. Depending on species, the correlation between chlorophyll content per leaf area (ζA) and ID was positive, negative, or non-significant. Path analyses revealed two opposite effects of ID on the amount of leaf chlorophyll. In the tree canopy, increasing ID enhanced ζA through changes in MA and NA, whereas the direct effect of light was negative in both canopies. The overall correlation network between foliage structural and chemical traits and the relationships with ID were significantly stronger in the tree canopy, suggesting limited re-acclimation potential in the mixed herbaceous canopy. Within-species acclimation patterns reflected the patterns within the main functional types. These data demonstrate that the relationships of current light availability vs. leaf dry mass per area, leaf nitrogen and chlorophyll contents, and chlorophyll to nitrogen ratio differ among multi-species herbaceous canopies and deciduous tree canopies due to contrasting canopy development.  相似文献   

17.

Background and aims

Future climate scenarios for the Mediterranean imply increasing precipitation variability. This study presents a large-scale water manipulation experiment simulating changes in precipitation variability, aiming at a better understanding of the effects of rainfall patterns on soil C and N cycling and understorey productivity in a Mediterranean oak woodland.

Methods

We used rain-out shelters to achieve (1) a normal dry period (7 days), and (2) a dry period increased three-fold (21 days), without altering total annual precipitation inputs.

Results

The temporal patterns of soil respiration (R s) and soil inorganic N were not affected by treatment. However, water infiltration and N leaching increased with large infrequent watering events. R s and soil NH4 +-N correlated with soil temperature, with soil NO3 ?-N being influenced by leaching.

Conclusions

The lack of significant treatment effects on either R s or soil inorganic N can be explained by (1) minor differences in plant productivity between the treatments, suggesting equal plant N demand, and (2) the absence of moisture dependence of R s and soil NH4 +-N. Increased N leaching with large infrequent precipitation events may have longer-term consequences for ecosystem functioning. Our results contribute to an improved understanding of possible climate change effects on key ecosystem processes in Mediterranean ecosystems.  相似文献   

18.
We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.  相似文献   

19.
Abstract. Many perennial plants strongly enhance the survival of seedlings of other species. We studied patterns of long-term recruitment of Quercus agrifolia (Coastal live oak) associated with shrub-dominated communities by counting Q. agrifolia recruits on a time sequence of historical aerial photographs and comparing recruitment among mapped patches of coastal sage scrub, chaparral, and grassland in an 1120-ha landscape. Because we could not identify new recruits in existing woodlands with aerial photographs, we studied the recruitment of Q. agrifolia in this vegetation type indirectly by comparing population size structures and the spatial relationships between shrubs and recruits among woodlands that varied in understory community type. At the landscape scale, recruitment was higher in coastal sage scrub vegetation than predicted by the extent of its coverage, commensurate with the spatial coverage of chaparral, and very low in grassland. Recruitment within woodland communities also varied considerably. In woodland communities on sheltered, north-oriented topography with understories dominated by shrubs, there were large numbers of small Q. agrifolia, and recruits were not significantly spatially associated with shrubs within plots. In woodlands with herbaceous understories there were few individuals in the small size classes, and recruits were strongly spatially associated with shrubs within plots. Woodlands with shrub-dominated understories have population structures that appear to be stable, but woodlands with herbaceous understories exhibit size structures associated with declining populations. Quercus recruitment into shrub-dominated patches corresponds with previous documentation of facilitative relationships between shrubs and oak seedlings, and suggests the occurrence of an unusual form of patch dynamics in these landscapes.  相似文献   

20.
  1. Cork oak landscapes are fascinating ecosystems, historically managed for cork extraction. The persistence in this habitat of many hollow veteran trees provides suitable micro-habitats for saproxylic beetles.
  2. We investigated the saproxylic beetle community of two isolated cork oak woodlands of central Italy with different degree of recovery after human transformation: (1) an open woodland and (2) a dense mixed woodland, both dominated by cork oak trees.
  3. We found endemic, rare and threatened saproxylic beetles in both the areas, confirming the important conservation value of cork oak landscapes. In the open woodland we observed a higher number of species in all trophic categories, except for mycophagous specialists. Several microhabitat variables reflected the different stage of recovery of the two woodlands.
  4. Our findings suggest the crucial role of diversified environments in protected areas: even a small difference in the degree of recovery (i.e., tree closeness) can affect the number of beetle species. Specifically, we found (1) more xerophilous species in the open woodland and (2) more mesophilous species in the dense mixed woodland.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号