首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesaconate is an intermediate in the glutamate degradation pathway of microorganisms such as Clostridium tetanomorphum. However, metabolic engineering to produce mesaconate has not been reported previously. In this work, two enzymes involved in mesaconate production, glutamate mutase and 3-methylaspartate ammonia lyase from C. tetanomorphum, were recombinantly expressed in Escherichia coli. To improve mesaconate production, reactivatase of glutamate mutase was discovered and adenosylcobalamin availability was increased. In addition, glutamate mutase was engineered to improve the in vivo activity. These efforts led to efficient mesaconate production at a titer of 7.81 g/L in shake flask with glutamate feeding. Then a full biosynthetic pathway was constructed to produce mesaconate at a titer of 6.96 g/L directly from glucose. In summary, we have engineered an efficient system in E. coli for the biosynthesis of mesaconate.  相似文献   

2.
《Process Biochemistry》2014,49(1):25-32
The compound 1,2,4-butanetriol (BT) is a valuable chemical used in the production of plasticizers, polymers, cationic lipids and other medical applications, and is conventionally produced via hydrogenation of malate. In this report, BT is biosynthesized by an engineered Escherichia coli from d-xylose. The pathway: d-xylose  d-xylonate  2-keto-3-deoxy-d-xylonate  3,4-dihydroxybutanal  BT, was constructed in E. coli by recruiting a xylose dehydrogenase and a keto acid decarboxylase from Caulobacter crescentus and Pseudomonas putida, respectively. Authentic BT was detected from cultures of the engineered strain. Further improvement on the strain was performed by blocking the native d-xylose and d-xylonate metabolic pathways which involves disruption of xylAB, yjhH and yagE genes in the host chromosome. The final construct produced 0.88 g L−1 BT from 10 g L−1 d-xylose with a molar yield of 12.82%. By far, this is the first report on the direct production of BT from d-xylose by a single microbial host. This may serve as a starting point for further metabolic engineering works to increase the titer of BT toward industrial scale viability.  相似文献   

3.
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6 g/L, with the yield of 0.48 g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6 g/L 3-HP at a yield of 0.51 g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.  相似文献   

4.
Olive stones are an agro-industrial by-product abundant in the Mediterranean area that is regarded as a potential lignocellulosic feedstock for sugar production. Statistical modeling of dilute-sulphuric acid hydrolysis of olive stones has been performed using a response surface methodology, with treatment temperature and process time as factors, to optimize the hydrolysis conditions aiming to attain maximum d-xylose extraction from hemicelluloses. Thus, solid yield and composition of solid and liquid phases were assessed by empirical modeling. The highest yield of d-xylose was found at a temperature of 195 °C for 5 min. Under these conditions, 89.7% of the total d-xylose was recovered from raw material. The resulting solids from optimal conditions were assayed as substrate for enzymatic hydrolysis, while fermentability of hemicellulosic hydrolysates was tested using the d-xylose-fermenting yeast Pachysolen tannophilus. Both bioprocesses were considerably influenced by enzyme loading and inoculum size. In the enzymatic hydrolysis step, about 56% of cellulose was converted into d-glucose by using an enzyme/solid ratio of 40 FPU g−1, while in the fermentation carried out with a cell concentration of 2 g L−1 a yield of 0.44 g xylitol/g d-xylose and a global volumetric productivity of 0.11 g L−1 h−1 were achieved.  相似文献   

5.
The hemA gene encoding 5-aminolevulinate synthase (ALAS) from Agrobacterium radiobacter zju-0121 showed 92.6% homology with that from A. radiobacter ATCC4718 and contained several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was used as the host to construct an efficient recombinant strain. And the encoded protein was over-expressed as fusion protein and was purified by affinity purification on Ni-NTA agarose and by gel filtration chromatography on Sephadex G-25 Medium resin. The recombinant protein was partly characterized, and d-glucose, d-fructose, d-xylose, d-mannose, l-arabinose, d-galactose, lactose, sucrose and maltose were detected to have no distinct inhibition on this recombinant ALAS. Meanwhile, 20 mM d-glucose or d-xylose inhibited about 20% activity of ALA dehydratase (ALAD) from Escherichia coli Rosetta(DE3). Combining d-xylose as a new inhibitor for ALAD with d-glucose in fed-batch culture and based on the optimal culture system using Rosetta(DE3)/pET28a-hemA, the yield of ALA achieved was 7.3 g/l (56 mM) under the appropriate conditions in the fermenter.  相似文献   

6.
7.
8.
Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31 mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33 mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5 mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

9.
Levan producing bacteria was isolated from rhizosphere soil. The molecular identification of this isolate was conducted using 16S rRNA, which resulted in a sequenced region of 1298 base pairs. The sequence alignment in the gene bank indicated that this isolate has a high percentage of similarity (99%) to the retrieved consensus sequence of Brachybacterium phenoliresistens strain phenol-A. The produced levan was characterized using TLC, FTIR, 1H NMR and 13C NMR spectroscopy techniques. The effects of nutritional and physical factors on this isolate’s levan production were investigated. The results demonstrated that the optimal sources for carbon and casein during levan production were sucrose and casein, yielding 7.88 g/land 8.12 g/l of levan, respectively. The highest levan yield (7.97 g/l) was obtained at a sucrose concentration of 300 g/l. At an initial pH of 7.8, this bacterium yielded their highest levan production of 7.88 g/l. The optimal incubation period was 72 h with a yield of 8.58 g/l, the optimal temperature was 30 °C and resulted in 7.87 g/l, and the highest levan production yield was obtained at 150 rpm and yielded 8.12 g/l.  相似文献   

10.
The development of lignocellulose as a sustainable resource for the production of fuels and chemicals will rely on technology capable of converting the raw materials into useful compounds; some such transformations can be achieved by biological processes employing engineered microorganisms. Towards the goal of valorizing the hemicellulose fraction of lignocellulose, we designed and validated a set of pathways that enable efficient utilization of pentoses for the biosynthesis of notable two-carbon products. These pathways were incorporated into Escherichia coli, and engineered strains produced ethylene glycol from various pentoses, including simultaneously from D-xylose and L-arabinose; one strain achieved the greatest reported titer of ethylene glycol, 40 g/L, from D-xylose at a yield of 0.35 g/g. The strategy was then extended to another compound, glycolate. Using D-xylose as the substrate, an engineered strain produced 40 g/L glycolate at a yield of 0.63 g/g, which is the greatest reported yield to date.  相似文献   

11.
Isoprenoids are important fine chemicals as material monomers, advanced fuels and pharmaceuticals. A variety of natural isoprenoids can be synthesized by engineered microbial strains. This work established a process by dividing the current isoprenoid pathway into the upstream fermentation process, from sugar to mevalonate (MVA), and the downstream process, from MVA to the target isoprenoids. The results showed that significant differences existed in the process conditions between the upstream and downstream fermentations. After individually optimizing the process conditions, the upstream MVA production (84.0 g/L, 34.0% and 1.8 g/ L/h) and downstream isoprene production (11.0 g/L and 0.23 g/L/h) were greatly improved in this two-step process. Flask fermentation experiments also confirmed that two-step route can significantly improve the sabinene titer to 150 mg/L (6.5-fold of the sabinene titer in an earlier flask study of our lab). Therefore, the two-step route proposed in this study may have potential benefits towards the current isoprenoids production directly from glucose. The high titer and yield of MVA indicate that MVA has great potential to be more broadly utilized as starting precursor in synthetic biology.  相似文献   

12.
When modifying the metabolism of living organisms with the aim of achieving biosynthesis of useful compounds, it is essential to ensure that it is possible to achieve overall redox balance. We propose a generalized strategy for this, based on fine-tuning of respiration. The strategy was applied on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)-2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD+, and a high titer of 371 mM (32 g/L) of acetoin was obtained with a yield of 82% of the theoretical maximum. Subsequently, we extended the metabolic pathway from acetoin to R-BDO by introducing the butanediol dehydrogenase gene from Bacillus subtilis. Since one mole of NADH is consumed when acetoin is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361 mM (32 g/L) R-BDO with a yield of 81% or 365 mM (33 g/L) with a yield of 82%, respectively. These results demonstrate the great potential in using finely-tuned respiration machineries for bio-production.  相似文献   

13.
This study investigated the feasibility of improving the stereospecificity of yeast by the adjustment of the culture medium composition and the reaction conditions. The investigation was performed systematically, using an approach that integrates the Taguchi's array method and the steepest ascent method. The reaction yield and the product's ee were the two indexes of reaction performance. A desirability function was applied to combine these two indexes as a single objective function. The removal of peptone and malt extract from the YM medium increased the yeast's stereoselectivity, without reducing the production of biomass. The medium composition and the reaction conditions were then simultaneously optimized. The resulting optimal conditions were 30 g/l glucose for cultivation, 12 g/l yeast extract, a cultivation time of 12 h, 15 g/l glucose for reaction, 150 g/l yeast for reaction, a reaction buffer concentration of 0.2 M and a buffer pH of 8.5. Compared to the one before this study, the product's ee was improved from 82.1 to 92.3%, and the reaction yield was enhanced from 77.3 to 82.3%. Furthermore, the biomass production was increased considerably from 5.94 to 10.14 g DCW/l.  相似文献   

14.
Corn fiber was chemically modified with ion-exchanging groups to prepare water-soluble polysaccharides. The soluble fractions were dialyzed using dialysis tubing (1 kDa) and the material retained inside the tubing was filtered through 10 kDa membranes to separate into fractions with molar mass of 1–10 kDa and greater than 10 kDa. The yield of solubilized material of molar mass higher than 10 kDa (47%) and 1–10 kDa (17%) obtained by sulfonation in the presence of NaOH under vacuum was greater than the yields of the treatment at the ambient pressure (43% and 2%) and also in experiments run with only KOH (40% and 5%) or NaOH (38% and 5%) at ambient pressure. The sugar analysis indicated that they were typical glucuronogalactoarabinoxylans containing 46–57% d-xylose (Xyl), 25–33% l-arabinose (Ara) and 6–12% d-galactose (Gal).  相似文献   

15.
Fatty acids (FAs) are promising precursors of advanced biofuels. This study investigated conversion of acetic acid (HAc) to FAs by an engineered Escherichia coli strain. We combined established genetic engineering strategies including overexpression of acs and tesA genes, and knockout of fadE in E. coli BL21, resulting in the production of ~1 g/L FAs from acetic acid. The microbial conversion of HAc to FAs was achieved with ~20% of the theoretical yield. We cultured the engineered strain with HAc-rich liquid wastes, which yielded ~0.43 g/L FAs using waste streams from dilute acid hydrolysis of lignocellulosic biomass and ~0.17 g/L FAs using effluent from anaerobic-digested sewage sludge. 13C-isotopic experiments showed that the metabolism in our engineered strain had high carbon fluxes toward FAs synthesis and TCA cycle in a complex HAc medium. This proof-of-concept work demonstrates the possibility for coupling the waste treatment with the biosynthesis of advanced biofuel via genetically engineered microbial species.  相似文献   

16.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

17.
The efficient fermentative production of solvents (acetone, n-butanol, and ethanol) from a lignocellulosic feedstock using a single process microorganism has yet to be demonstrated. Herein, we developed a consolidated bioprocessing (CBP) based on a twin-clostridial consortium composed of Clostridium cellulovorans and Clostridium beijerinckii capable of producing cellulosic butanol from alkali-extracted, deshelled corn cobs (AECC). To accomplish this a genetic system was developed for C. cellulovorans and used to knock out the genes encoding acetate kinase (Clocel_1892) and lactate dehydrogenase (Clocel_1533), and to overexpress the gene encoding butyrate kinase (Clocel_3674), thereby pulling carbon flux towards butyrate production. In parallel, to enhance ethanol production, the expression of a putative hydrogenase gene (Clocel_2243) was down-regulated using CRISPR interference (CRISPRi). Simultaneously, genes involved in organic acids reassimilation (ctfAB, cbei_3833/3834) and pentose utilization (xylR, cbei_2385 and xylT, cbei_0109) were engineered in C. beijerinckii to enhance solvent production. The engineered twin-clostridia consortium was shown to decompose 83.2 g/L of AECC and produce 22.1 g/L of solvents (4.25 g/L acetone, 11.5 g/L butanol and 6.37 g/L ethanol). This titer of acetone-butanol-ethanol (ABE) approximates to that achieved from a starchy feedstock. The developed twin-clostridial consortium serves as a promising platform for ABE fermentation from lignocellulose by CBP.  相似文献   

18.
Hyaluronic acid (HA) production in Streptococcus zooepidemicus competes for the carbon source along with biomass formation, lactate formation (via glycolysis) and pentose phosphate pathway (PPP). In our studies, increase in HA molecular weight was observed by redirecting the carbon flux towards HA biosynthesis pathway by partially inhibiting the glycolytic pathway. Batch bioreactor (1.2 L) studies showed that with the addition of 25 μM sodium iodoacetate, 5 g/L tryptophan and 10 g/L pyruvate, which are glycolytic inhibitors, HA molecular weight increased to 3.2, 3.2 and 3.1 MDa respectively compared to control run (2.4 MDa). Yield coefficients YHA/S and YLA/S showed inverse relationship, indicating competition for glucose between HA and lactic acid formation. Addition of 5 g/L glutamine along with 25 μM sodium iodoacetate also increased the HA concentration to 5.0 g/L from 2.0 g/L in control run. Metabolic flux analysis studies show that concentration and molecular weight of HA is increased by decreasing carbon flux towards glycolysis and PPP and increasing carbon flux towards HA precursor formation. It was observed that specific growth rate of the cells correlated positively to the specific HA production rate and negatively to the molecular weight of HA produced. Addition of antioxidant tannic acid also increased molecular weight to 3.0 MDa.  相似文献   

19.
Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives.  相似文献   

20.
Fatty alcohols are important components of a vast array of surfactants, lubricants, detergents, pharmaceuticals and cosmetics. We have engineered Saccharomyces cerevisiae to produce 1-hexadecanol by expressing a fatty acyl-CoA reductase (FAR) from barn owl (Tyto alba). In order to improve fatty alcohol production, we have manipulated both the structural genes and the regulatory genes in yeast lipid metabolism. The acetyl-CoA carboxylase gene (ACC1) was over-expressed, which improved 1-hexadecanol production by 56% (from 45 mg/L to 71 mg/L). Knocking out the negative regulator of the INO1 gene in phospholipid metabolism, RPD3, further enhanced 1-hexadecanol production by 98% (from 71 mg/L to 140 mg/L). The cytosolic acetyl-CoA supply was next engineered by expressing a heterologous ATP-dependent citrate lyase, which increased the production of 1-hexadecanol by an additional 136% (from 140 mg/L to 330 mg/L). Through fed-batch fermentation using resting cells, over 1.1 g/L 1-hexadecanol can be produced in glucose minimal medium, which represents the highest titer reported in yeast to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号