首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
干热河谷稀树灌丛常绿植物能够忍受长达半年以上的季节性干旱胁迫,但对这些常绿植物响应干旱胁迫的生理生态机制研究很少。本研究以干热河谷稀树灌丛优势常绿植物白皮乌口树(Tarenna depauperata Hutchins)为研究对象,分别在雨季和干季测定其叶片的水势、压力-体积曲线、气体交换参数、叶片光谱特征以及叶绿素荧光和P700的光能分配。结果显示:受严重季节性干旱胁迫的影响,与雨季相比,干季的凌晨叶片水势(Ψpd)下降至-4.5 MPa,水分传导的叶比导率(KL)下降了49.5%,叶绿素反射指数(NDVI)下降了40.6%,花青素反射指数(ARI)上升至0.074(约为雨季的12.3倍),并且雨季和干季的叶片水势、水分传导效率、叶绿素含量和花青素含量均差异显著(P0.05)。与雨季相比,干旱导致光系统Ⅱ(PSⅡ)最大光化学量子效率(Fv/Fm)显著下降至0.72(P0.05),即PSⅡ发生光抑制,而光系统Ⅰ(PSⅠ)的活性(Pm)未发生明显变化;干季叶片的最大非光化学淬灭(NPQ)增加了31%,而激发的最大环式电子传递速率(CEF)下降了66%。表明长期干旱胁迫使CEF的激发受到强烈抑制,即光能捕获效率的降低和NPQ的增强促进了白皮乌口树在长期干旱胁迫下的光保护。  相似文献   

2.
    
Species are often classified along a continuum from isohydric to anisohydric, with isohydric species exhibiting tighter regulation of leaf water potential through stomatal closure in response to drought. We investigated plasticity in stomatal regulation in an isohydric (Eucalyptus camaldulensis) and an anisohydric (Acacia aptaneura) angiosperm species subject to repeated drying cycles. We also assessed foliar abscisic acid (ABA) content dynamics, aboveground/belowground biomass allocation and nonstructural carbohydrates. The anisohydric species exhibited large plasticity in the turgor loss point (ΨTLP), with plants subject to repeated drying exhibiting lower ΨTLP and correspondingly larger stomatal conductance at low water potential, compared to plants not previously exposed to drought. The anisohydric species exhibited a switch from ABA to water potential‐driven stomatal closure during drought, a response previously only reported for anisohydric gymnosperms. The isohydric species showed little osmotic adjustment, with no evidence of switching to water potential‐driven stomatal closure, but did exhibit increased root:shoot ratios. There were no differences in carbohydrate depletion between species. We conclude that a large range in ΨTLP and biphasic ABA dynamics are indicative of anisohydric species, and these traits are associated with exposure to low minimum foliar water potential, dense sapwood and large resistance to xylem embolism.  相似文献   

3.
The tepary bean ( Phaseolus acutifolius Gray var. latifolius ), a drought resistant species, was compared under water stress conditions with the more drought susceptible P. vulgaris L. cvs Pinto and White Half Runner (WHR). In order to better understand the basis for the superior drought resistance of tepary, this study was designed to determine the relationships among leaf water potential, osmotic potential, turgor potential, and relative water content (RWC).
Plants were prestressed by withholding irrigation water. These stress pretreatments changed the relation between leaf water potential and relative water content of both species so that prestressed plants had lower water potentials than controls at the same leaf RWC. Tepary had lower water potentials at given RWC levels than Pinto or WHR; this can account for part of the superior resistance of tepary. In all genotypes, prestressed plants maintained osmotic potentials approximately 0.2 MPa lower than controls. Tepary reached osmotic potentials that were significantly lower (0.15 to 0.25 MPa) than Pinto or WHR. Both control and prestressed tepary plants had 0.05 to 0.25 MPa more turgor than Pinto or WHR at RWC values between 65 and 80%. Both prestressed and control tepary plants had greater elasticity (a lower elastic modulus) than Pinto or WHR. This greater turgor of tepary at low RWC values could be caused by several factors including greater tissue elasticity, active accumulation of solutes, or greater solute concentration.
Tepary had significantly lower osmotic potentials than the P. vulgaris cultivars, but there was little difference in osmotic potential between Pinto and WHR. Knowledge of differences in osmotic and turgor potentials among and within species could be useful in breeding for drought resistance in Phaseolus.  相似文献   

4.
    
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   

5.
    
We investigated how leaf hydraulic conductance (Kleaf) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO2 concentrations (CO2a and CO2e, respectively). We also examined how Kleaf varies with changes in reference leaf water potential (Ψleaf‐ref) and stomatal conductance (gs‐ref) calculated at vapour pressure deficit, D of 1 kPa. We detected significant reductions in Kleaf caused by N and CO2e, but neither treatment affected pre‐dawn or midday Ψleaf. We also detected a significant CO2e‐induced reduction in gs‐ref and Ψleaf‐ref. Among treatments, the sensitivity of Kleaf to Ψleaf was directly related to a reference Kleaf (Kleaf‐ref computed at Ψleaf‐ref). This liquid‐phase response was reflected in a similar gas‐phase response, with gs sensitivity to D proportional to gs‐ref. Because leaves represented a substantial component of the whole‐tree conductance, reduction in Kleaf under CO2e affected whole‐tree water use by inducing a decline in gs‐ref. The consequences of the acclimation of leaves to the treatments were: (1) trees growing under CO2e controlled morning leaf water status less than CO2a trees resulting in a higher diurnal loss of Kleaf; (2) the effect of CO2e on gs‐ref was manifested only during times of high soil moisture.  相似文献   

6.
全球范围内干旱频率和强度的增加严重影响树木生长,甚至导致森林大面积死亡。压力-容积(PV)曲线能够反映树木对干旱的容忍能力,但在局域尺度上尚未确定哪个PV曲线参数具有最优指示性。通过测定东北温带森林20种主要树种(包括16种被子植物和4种裸子植物)的PV曲线性状,包括质壁分离时的相对含水量(RWCtlp)、失膨点叶水势(TLP)、饱和含水时的叶渗透势(π0)、细胞弹性模量(ε)、叶水容(Cleaf)及叶结构性状(比叶面积和叶密度),研究局域尺度上叶片耐旱性的最佳指示性状,并分析叶片PV性状与结构性状间的相关性。结果表明: 被子植物的RWCtlp 显著大于裸子植物,但其Cleaf 显著小于裸子植物,这表明用RWCtlpCleaf可以指示东北温带森林不同功能型树种间耐旱性的大小。在被子植物中,TLP和π0与叶密度呈显著负相关,且均与比叶面积呈显著正相关;而ε与比叶面积呈显著负相关。然而,裸子植物PV曲线性状与叶结构性状之间呈现与被子植物完全相反的趋势。裸子植物与被子植物树种之间PV曲线性状与叶结构性状关系的差异,可能归因于二者采取不同的干旱响应和适应策略。  相似文献   

7.
    
The effects of long-term flooding on the growth of six-month-old Actinidia chinensis Planch cv. Abbot plants and some effects on stomatal behaviour and leaf water relations were examined under controlled conditions for 28 days. Flooding caused stomatal closure and decreases in transpiration rate, xylem water potential, osmotic potential and turgor potential. Flooding also caused inhibition of the dry weight increase of leaves plus stems and of roots, chlorosis and necrosis of leaves, production of hypertrophied lenticels and the appearance of a small number of adventitious roots on the submerged portions of the stems. Rapid and partial stomatal closure by flooding may not only be due to the passive mechanical response which follows leaf dehydration, since flooded plants showed an increase in xylem water potential and osmotic potential during the first days of the experiment. The marked intolerance of Actinidia chinensis to flooding has been a serious barrier to its culture in poorly drained soils, hence careful irrigation management is required.  相似文献   

8.
    
The concept of iso‐ vs. anisohydry has been used to describe the stringency of stomatal regulation of plant water potential (ψ). However, metrics that accurately and consistently quantify species’ operating ranges along a continuum of iso‐ to anisohydry have been elusive. Additionally, most approaches to quantifying iso/anisohydry require labour‐intensive measurements during prolonged drought. We evaluated new and previously developed metrics of stringency of stomatal regulation of ψ during soil drying in eight woody species and determined whether easily‐determined leaf pressure–volume traits could serve as proxies for their degree of iso‐ vs. anisohydry. Two metrics of stringency of stomatal control of ψ, (1) a ‘hydroscape’ incorporating the landscape of ψ over which stomata control ψ, and (2) the slope of the daily range of ψ as pre‐dawn ψ declined, were strongly correlated with each other and with the leaf osmotic potential at full and zero turgor derived from pressure–volume curves.  相似文献   

9.
Important functions of water relations are considered to be related to genome size diversity in gymnosperms. We investigated relationships among genome size, dimensional characteristics of conductive cells, and water relations parameters by using young seedlings of six Pinus species. Xylem hydraulic conductivity was not correlated with genome size and dimensional characteristics of conductive cells, but the water potential at the turgor loss point was. Pinus species with large genome sizes had thick cell walls and small ratios of lumen radii to cell wall thickness in their conductive cells, and those species lost their turgor to tissue dehydration al low water potentials. The characteristics observed in the present study may contribute to pine drought tolerance.  相似文献   

10.
    
Aims Plants use a variety of hydraulic strategies to adapt to seasonal drought that differ by species and environmental conditions. The early-diverging Magnoliaceae family includes two closely related genera with contrasting leaf habits, Yulania (deciduous) and Michelia (evergreen), which naturally inhabit temperate and tropical regions, respectively. Here, we evaluate the hydraulic strategy of species from both genera that have been ex situ conserved in a subtropical region to determine how they respond to the novel cool–dry season climatic pattern.Methods We measured ecophysiological traits in five Michelia and five Yulania species conserved in the South China Botanical Garden in both wet and dry season conditions and monitored the whole-year sap flow for four of these species.Important findings We found that Magnoliaceae species that have been ex situ conserved in a subtropical climate did not suffer from excessive water stress due to the mild drought conditions of the dry season and the ecophysiological adjustments the species made to avoid this stress, which differed by leaf habit. Specifically, deciduous species completely shed their leaves during the dry season, while evergreen species decreased their turgor loss points, dry mass based photosynthetic rates, stomatal conductance and specific leaf areas (SLAs) compared to wet season measurements. In comparing the two distinct leaf habits during the wet season, the leathery-leaved evergreen species had higher leaf hydraulic conductance and leaf to sapwood area ratios than the papery-leaved deciduous species, while the deciduous species had greater hydraulic conductivity calculated on both a stem and leaf area basis, dry mass based photosynthetic rates, leaf nutrients, SLAs and stomatal sizes than the evergreen species. Interestingly, species from both genera maintained similar sap flow in the wet season. Both photosynthetically active radiation and vapour pressure deficit affected the diurnal patterns of sap flow in the wet season, while only vapour pressure deficit played a dominant role in the dry season. This study reveals contrasting hydraulic strategies in Yulania and Michelia species under subtropical seasonal conditions, and suggests that these ecophysiological adjustments might be affected more by leaf habit than seasonality, thus reflecting the divergent evolution of the two closely related genera. Furthermore, we show that Magnoliaceae species that are ex situ conserved in a subtropical climate are hydraulically sound, a finding that will inform future conservation efforts of this ancient family under the threat of climatic change.  相似文献   

11.
桂西南喀斯特地区生物多样性丰富、特有种多, 同时也是石漠化问题较为严重的区域。由于该喀斯特地区土层浅薄、岩石裸露、表层储水能力差, 植物在干旱季节经常会受到水分胁迫。植物水力学特征不仅是探讨喀斯特地区植物的生理生态适应性的关键, 还能够为石漠化地区的植被恢复提供重要参考。该研究测定了桂西南喀斯特季雨林17种代表性木本植物(包括不同生活型、叶片习性和生境)的木质部脆弱性曲线、最低水势、叶片膨压丧失点和边材密度等水力性状, 结果发现: (1)喀斯特植物木质部导水率丧失50%时的水势值(P50)的种间差异较大(-0.51- -2.51 MPa), 其中常绿种的抗栓塞能力比落叶种强; (2)喀斯特植物的木质部水力安全边界值(最低水势与P50之间的差值)的均值为0.36 MPa, 说明喀斯特森林植物在自然最低水势状况下木质部发生栓塞的程度较高; 但是不同植物种间存在显著差异, 这可能与喀斯特峰丛洼地生境的复杂性以及物种不同的抗旱策略有关; (3)由于喀斯特植物水分适应机制的多样化, 导致木质部水力安全边界与叶片膨压丧失点、边材密度的相关性并不显著。在区域气候干热化的背景下, 结合喀斯特植物的栓塞脆弱性和长期水势监测(尤其极端干旱事件)分析它们的水力安全, 对预测未来喀斯特森林物种分布和群落动态具有重要的指示作用。  相似文献   

12.
In recent years, attempts have been made in linking pressure–volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An) and leaf mass per area (LMA). We measured gas exchange, pressure–volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An, capacitance and the turgor loss point (πtlp) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.  相似文献   

13.
Clarke JE  Johnson GN 《Planta》2001,212(5-6):808-816
The effect of temperature on the rate of electron transfer through photosystems I and II (PSI and PSII) was investigated in leaves of barley (Hordeum vulgare L.). Measurements of PSI and PSII photochemistry were made in 21% O2 and in 2% O2, to limit electron transport to O2 in the Mehler reaction. Measurements were made in the presence of saturating CO2 concentrations to suppress photorespiration. It was observed that the O2 dependency of PSII electron transport is highly temperature dependent. At 10 °C, the quantum yield of PSII (ΦPSII) was insensitive to O2 concentration, indicating that there was no Mehler reaction operating. At high temperatures (>25 °C) a substantial reduction in ΦPSII was observed when the O2 concentration was reduced. However, under the same conditions, there was no effect of O2 concentration on the ΔpH-dependent process of non-photochemical quenching. The rate of electron transport through PSI was also found to be independent of O2 concentration across the temperature range. We conclude that the Mehler reaction is not important in maintaining a thylakoid proton gradient that is capable of controlling PSII activity, and present evidence that cyclic electron transport around PSI acts to maintain membrane energisation at low temperature. Received: 6 July 2000 / Accepted: 3 August 2000  相似文献   

14.
    
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large‐scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem‐P50), leaf turgor loss point (TLP), cellular osmotic potential (πo), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought‐tolerant versus drought‐intolerant based on observed mortality rates, and subdivided into early‐ versus late‐successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem‐P50, TLP, and πo, but not ε, occurred at significantly higher water potentials for the drought‐intolerant PFT compared to the drought‐tolerant PFT; however, there were no significant differences between the early‐ and late‐successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density—a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought‐tolerant and drought‐intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry‐season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co‐occuring drought‐tolerant and drought‐intolerant tropical tree species promises to facilitate a much‐needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.  相似文献   

15.
16.
    
It is important to understand the ecophysiological characters of plants when exploring mechanisms underlying species substitution in the process of plant succession. In the present study, we selected 34 woody species from different stages of secondary succession in subtropical forests of southern China, and measured their hydraulic conductivity, gas exchange rates, leaf nutrients and drought‐tolerance traits such as xylem resistance to cavitation, turgor loss point and carbon isotope ratio. Principal component analysis revealed that early‐, mid‐ and late‐successional species were significantly separated along axis 1, which was strongly associated with hydraulic‐photosynthetic coordination. In contrast to species distributed in late‐successional forest, early‐successional species had the highest hydraulic conductivity, net photosynthetic rates, photosynthetic nitrogen and phosphorus use efficiencies, but had the lowest photosynthetic water‐use efficiency. However, changes of the measured drought‐tolerance traits of the 34 species along the succession did not demonstrate a clear trend – no significant correlations between these traits and plant successional stages were found. Moreover, the trade‐off between hydraulic efficiency and safety was not identified. Taken together, our results suggested that hydraulic efficiency and photosynthetic function, rather than drought tolerance, play an important role in species distributions along plant succession in subtropical forests.  相似文献   

17.
Seasonal changes of some water relations parameters of Norway spruce shoots ( Picea abies [L.] Karst.) were studied during two experiments using the pressure-volume analysis. For each experiment only shoots of a single tree were used.
During the first study, the course of the turgor loss point (as bulk osmotic pressure when turgor first reaches zero, πp) of shoots developed in late 1986 vegetation period, were measured in 1987. The turgor loss point decreased temporarily from –2.5 MPa at the beginning of the year to –3.3 MPa at the end of March, but then increased to the original level for the rest of the year.
During the second study, water relations parameters were measured in late summer 1987 and in late winter 1988. Winter shoots at full water saturation contained up to 20% less water than in late summer. Accordingly, the bulk osmotic pressure at full water saturation (πp) decreased from –1.7 MPa in late summer to –1.9 MPa in winter, πp decreased also from –2.2 MPa to –2.8 MPa. However, the amount of osmotically active substances (mOsmol, N) remained unchanged. The relative amount of apoplastic water in the total shoot water content appeared to drop insignificantly from 17% to 15%.
The results show that the decrease in πo and πp in late winter is not due to an accumulation of osmotically active substances in the vacuoles but is due to a decrease in tissue water content. The temporary reduction of the symplastic volume by deposition of osmotically inert substances seems to be the most probable cause of this phenomenon.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m?2 s?1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity.  相似文献   

19.
Duhme  F.  Hinckley  T. M. 《Plant Ecology》1992,99(1):185-198
Based upon two different research studies in the mediterranean regions of France and Turkey, drought resistance strategies were investigated in a broad group of species. The diurnal and seasonal patterns of the water relations of different lifeforms from the thermo-mediterranean to submediterranean lifezones were compared. Three sites near Montpellier, in Southern France, and five sites near Antalya, Turkey were used for this comparison. Xylem pressure potential and relative stomatal aperture were the key water relations parameters collected in France while these parameters as well as osmotic potential and leaf conductance were studied in Turkey.From the 26 different study species investigated in France, 7 distinct types of stomatal control were observed, with the deciduous lifeforms showing the least control, the sclerophyllous and coniferous evergreens the greatest control and the malacophyllous shrublets intermediate levels of control. Predawn water potential values provided a means of classifying species according to their temporal and spatial utilization of site water reserves. The comparison of turgor potentials (difference between water and osmotic potentials) gave an insight into leaf adaptations to site moisture. Species with high predawn water potentials generally maintain positive turgor even at midday during the summer, whereas species with low predawn values were frequently at zero turgor even at predawn. Phlomis grandiflora was the most extreme species with mid-summer predawns and midday water potentials of –6 MPa and osmotic potentials never more negative than –2.4 MPa.  相似文献   

20.
    
Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or ‘wilting’ point (πtlp). As soil dries, plants shift πtlp by accumulating solutes (i.e. ‘osmotic adjustment’). We conducted the first global analysis of plasticity in Δπtlp and related traits for 283 wild and crop species in ecosystems worldwide. Δπtlp was widely prevalent but moderate (?0.44 MPa), accounting for 16% of post‐drought πtlp. Thus, pre‐drought πtlp was a considerably stronger predictor of post‐drought πtlp across species of wild plants. For cultivars of certain crops Δπtlp accounted for major differences in post‐drought πtlp. Climate was correlated with pre‐ and post‐drought πtlp, but not Δπtlp. Thus, despite the wide prevalence of plasticity, πtlp measured in one season can reliably characterise most species' constitutive drought tolerances and distributions relative to water supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号