首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Footwear devices that shift foot center of pressure (COP), thereby impacting lower-limb biomechanics to produce clinical benefit, have been studied regarding degenerative diseases of knee and hip joints, exhibiting evidence of clinical success. Ability to purposefully affect trunk biomechanics has not been investigated for this type of footwear. Fifteen healthy young male subjects underwent gait and electromyography analysis using a biomechanical device that shifts COP via moveable convex elements attached to the shoe sole. Analyses were performed in three COP configurations for pairwise comparison: (1) neutral (control) (2) laterally deviated, and (3) medially deviated. Sagittal and frontal-plane pelvis and spine kinematics, external oblique activity, and frontal and transverse-plane lumbar moments were affected by medio-lateral COP shift. Transverse-plane trunk kinematics, activity of the lumbar longissimus, latissimus dorsi, rectus abdominus, and quadratus lumborum, and sagittal-plane lumbar moment, were not significantly impacted. Two linear mixed effects models assessed predictive impact of (I) COP location, and (II) trunk kinematics and neuromuscular activity, on the significant lumbar moment parameters. The COP was a significant predictor of all modeled frontal and transverse-plane lumbar moment parameters, while pelvic and spine rotation, and lumbar longissimus activity were significant predictors of one frontal-plane lumbar moment parameter. Model results suggest that, although trunk biomechanics and muscle activity were altered by COP shift, COP offset influences lumbar kinetics directly, or via lower-limb changes not assessed in this study, but not by means of alteration of trunk kinematics or muscle activity. Further study may reveal implications in treatment of low back pain.  相似文献   

2.
    

Background

Foot center of pressure (COP) manipulation has been associated with improved gait patterns. The purpose of this study was to determine lower limb muscle activation changes in knee osteoarthritis patients, both immediately after COP manipulation and when COP manipulation was combined with continuous gait therapy (AposTherapy).

Methods

Fourteen females with medial compartment knee osteoarthritis underwent EMG analyzes of key muscles of the leg. In the initial stage, trials were carried out at four COP positions. Following this, gait therapy was initiated for 3 months. The barefoot EMG was compared before and after therapy.

Results

The average EMG varied significantly with COP in at least one phase of stance in all examined muscles of the less symptomatic leg and in three muscles of the more symptomatic leg. After training, a significant increase in average EMG was observed in most muscles. Most muscles of the less symptomatic leg showed significantly increased peak EMG. Activity duration was shorter for all muscles of the less symptomatic leg (significant in the lateral gastrocnemius) and three muscles of the more symptomatic leg (significant in the biceps femoris). These results were associated with reduced pain, increased function and improved spatiotemporal parameters.

Conclusions

COP manipulation influences the muscle activation patterns of the leg in patients with knee osteoarthritis. When combined with a therapy program, muscle activity increases and activity duration decreases.  相似文献   

3.
    
Previous electromyographic (EMG) studies of gluteus medius (GMed) have not accurately quantified the function of the three proposed structurally and functionally unique segments (anterior, middle and posterior). Therefore this study used anatomically verified locations for intramuscular electrode recordings in three segments of GMed to determine whether the segments are functionally independent. Bipolar fine wire electrodes were inserted into each segment of GMed in 15 healthy individuals. Participants completed a series of four walking trials, followed by maximum voluntary isometric contractions (MVICs) in five different positions. Temporal and amplitude variables for each segment were compared across the gait cycle using ANOVA. The relative contributions of each segment to the MVIC trials were compared with non-parametric tests. All segments showed a biphasic response during the stance phase of gait. There were no differences in amplitude variables (% MVIC) between segments, but the anterior segment had a later peak during both the first and second bursts. For the MVIC trials, there were significant differences in amplitude between segments in four of the five test positions. These data indicate that GMed is composed of three functionally independent segments. This study contributes to the theoretical understanding of the role of GMed.  相似文献   

4.
    
Prominent conservative treatment options for medial-compartment knee osteoarthritis include footwear that reduces knee adduction moment (KAM) correlated with detrimental loads in the medial compartment of the knee, thus providing clinical benefit. The proposed mechanism by which they reduce KAM is a lateral shift in foot center of pressure (COP) and a consequent shortening of the knee lever arm (KLA), thereby reducing KAM, which can be simply calculated as KLA multiplied by the frontal plane ground reaction force (FP-GRF). The present study investigated this mechanism for a unique biomechanical device capable of shifting COP by means of moveable convex elements attached to the shoe. Fourteen healthy young male subjects underwent gait analysis in two COP configurations of the device for comparison: (1) laterally and (2) medially deviated. Average midstance KLA and KAM were decreased by 8.2% and 8.7%, respectively, in the lateral COP compared to medial. Ground reaction force parameters, frontal plane knee angle (FP-KA), and spine lateral flexion angle (SLF) did not differ between COP configurations. No study parameters differed for terminal stance. Linear mixed effects models showed that COP and FP-GRF components, but not FP-KA and SLF, were significant predictors of KLA. In addition, KLA and FP-GRF were significant predictors of KAM; although, FP-GRF did not change significantly with medio-lateral COP shift, while KLA did. This suggests that the mechanism by which the study device reduces KAM is primarily through shortening of KLA brought on by a lateral shift in COP.  相似文献   

5.
In running humans, the point of force application between the foot and the ground moves forwards during the stance phase. Our aim was to determine the mechanical consequences of this 'point of force translation' (POFT). We modified the planar spring-mass model of locomotion to incorporate POFT, and then compared spring-mass simulations with and without POFT. We found that, if leg stiffness is adjusted appropriately, it is possible to maintain very similar values of peak vertical ground reaction force (GRF), stance time, contact length and vertical centre of mass displacement, whether or not POFT occurs. The leg stiffness required to achieve this increased as the distance of POFT increased. Peak horizontal GRF and mechanical work per step were lower when POFT occurred. The results indicate that the lack of POFT in the traditional spring-mass model should not prevent it from providing good predictions of peak vertical GRF, stance time, contact length and vertical centre of mass displacement in running humans, if an appropriate spring stiffness is used. However, the model can be expected to overestimate peak horizontal GRF and mechanical work per step. When POFT occurs, the spring stiffness in the traditional spring-mass model is not equivalent to leg stiffness. Therefore, caution should be exercised when using spring stiffness to understand how the musculoskeletal system adapts to different running conditions. This can explain the contradictory results in the literature regarding the effect of running speed on leg stiffness.  相似文献   

6.
The evaluation of surface electromyography (sEMG) is commonly performed in children with cerebral palsy (CP) and reliable interpretation necessitates knowledge of the variability in age-matched, typically developing (TD) children. Variance ratio was calculated for inter-trial sEMG linear envelope (LE) and the Instantaneous Mean Frequency (IMNF) variability in the lower limb muscle in TD children, in three different age groups during slow, comfortable speed, and fast walking. Significantly greater variability was found in the 7–9 group compared to the 13–16 years. Variability during both slow and fast walking was significantly greater compared to comfortable speed walking and was profound in the 7–9 year age group. Variability of the IMNF was significantly greater than LE in the Tibialis-Anterior, Biceps-Femoris (BF), Vastus-Lateralis (VL), and Rectus-Femoris (RF). Clinical implications are that children under 10 years are more variable than older children when walking either slower or faster than self-selected walking speed. This suggests that muscle activation patterns in gait mature at a later stage of childhood than do kinematic gait patterns. Greater precaution, therefore, is needed when comparing sEMG patterns of less than 10 years of age patient and TD children.  相似文献   

7.
    
Gait analysis has provided important information concerning gait patterns and variability of gait in patients with knee osteoarthritis (OA) of varying severity. The objective of this study was to clarify how the variability of gait parameters is influenced by the severity of knee OA. Gait analysis was performed at three different controlled walking speeds in three groups of subjects with varying degrees of knee OA (20 healthy subjects with no OA and 90 patients with moderate or severe OA). The variability of gait parameters was characterized by the coefficient of variance (CV) of spatial-temporal parameters, as well as by the mean coefficient variance (MeanCV) of angular parameters. Based on our results, we conclude that the complexity of gait decreases if the walking speed differs from the self-selected speed. In patients with knee OA, the decreased variability of angular parameters on the affected side represents decreased joint flexibility. This leads to decreased consistency in movements of the lower limbs from stride-to-stride, as shown by increased variability of spatial-temporal parameters. Decreased joint flexibility and consistency of movement can be associated with decreased complexity of movement. Other joints of the kinetic chain, such as joints of the non-affected side and the pelvis, play an important role in compensation and adaptation of step-by step motion and in the ability of secure gait. Results suggest that the variability of gait associated with knee osteoarthritis is gender-dependent. During rehabilitation, particular attention must be paid to improving gait stability and proprioception and gender differences should be taken into account.  相似文献   

8.
    
The Re-Link Trainer (RLT) is a modified walking frame with a linkage system designed to apply a non-individualized kinematic constraint to normalize gait trajectory of the left limb. The premise behind the RLT is that a user’s lower limb is constrained into a physiologically normal gait pattern, ideally generating symmetry across gait cycle parameters and kinematics. This pilot study investigated adaptations in the natural gait pattern of healthy adults when using the RLT compared to normal overground walking. Bilateral lower limb kinematic and electromyography data were collected while participants walked overground at a self-selected speed, followed by walking in the RLT. A series of 2-way analyses of variance examined between-limb and between-condition differences. Peak hip extension and knee flexion were reduced bilaterally when walking in the RLT. Left peak hip extension occurred earlier in the gait cycle when using the RLT, but later for the right limb. Peak hip flexion was significantly increased and occurred earlier for the constrained limb, while peak plantarflexion was significantly reduced. Peak knee flexion and plantarflexion in the right limb occurred later when using the RLT. Significant bilateral reductions in peak electromyography amplitude were evident when walking in the RLT, along with a significant shift in when peak muscle activity was occurring. These findings suggest that the RLT does impose a significant constraint, but generates asymmetries in lower limb kinematics and muscle activity patterns. The large interindividual variation suggests users may utilize differing motor strategies to adapt their gait pattern to the imposed constraint.  相似文献   

9.
This study investigated the influence of gait speed on the control of mediolateral dynamic stability during gait initiation. Thirteen healthy young adults initiated gait at three self-selected speeds: Slow, Normal and Fast. The results indicated that the duration of anticipatory postural adjustments (APA) decreased from Slow to Fast, i.e. the time allocated to propel the centre of mass (COM) towards the stance-leg side was shortened. Likely as an attempt at compensation, the peak of the anticipatory centre of pressure (COP) shift increased. However, COP compensation was not fully efficient since the results indicated that the mediolateral COM shift towards the stance-leg side at swing foot-off decreased with gait speed. Consequently, the COM shift towards the swing-leg side at swing heel-contact increased from Slow to Fast, indicating that the mediolateral COM fall during step execution increased as gait speed rose. However, this increased COM fall was compensated by greater step width so that the margin of stability (the distance between the base-of-support boundary and the mediolateral component of the “extrapolated centre of mass”) at heel-contact remained unchanged across the speed conditions. Furthermore, a positive correlation between the mediolateral extrapolated COM position at heel-contact and step width was found, indicating that the greater the mediolateral COM fall, the greater the step width. Globally, these results suggest that mediolateral APA and step width are modulated with gait speed so as to maintain equivalent mediolateral dynamical stability at the time of swing heel-contact.  相似文献   

10.
    
The purpose of this study was to determine the validity of kinematic based initial contact (IC) and toe-off (TO) identification algorithms for rearfoot and non-rearfoot runners across a broad range of treadmill running speeds. 14 healthy active participants completed six 20–60 s treadmill running trials at 6 speeds: 2.24, 2.68, 3.13, 3.58, 4.02, and 4.48 ms−1. 3D kinematic data were collected for the last 20 s of each trial. Force plates (FP) were used as the gold standard to determine ICFP and TOFP for each step. Three algorithms for finding IC, ICMilner, ICAlvim, ICAlvim-mod, and one algorithm for finding toe off, TOFellin, were chosen for analysis. Root mean square errors (RMSE) and difference scores with 95% confidence intervals were computed for IC, TO and stance time (ST). ICAlvim RMSE ranged from 0.175 to 0.219 s. STAlvim RMSE ranged from 0.168 to 0.216 s. ICAlvim-mod RMSE ranged from 0.105 to 0.131 s. STAlvim-mod RMSE ranged from 0.108 to 0.129 s. ICMilner RMSE ranged 0.012 to 0.015 s. STMilner RMSE ranged 0.019 to 0.024 s. ICMilner accuracy was inversely related to speed. ICMilner corrected with a linear regression equation reduced differences to- 0.006 ± 0.012 s with 86% of foot strikes identified within 20 ms and 58% with 10 ms. TOFellin RMSE ranged from 0.012 to 0.016 s. ICMilner adjusted for speed and TOFellin can be used to predict IC and TO within a broad range of treadmill running speeds (2.24–4.48 ms−1) and for rearfoot and non-rearfoot strikers.  相似文献   

11.
    
The presence of multiple foot types has been used to explain the variability of foot structure observed among healthy adults. These foot types were determined by specific static morphologic features and included rectus (well aligned hindfoot/forefoot), planus (low arched), and cavus (high arched) foot types. Unique biomechanical characteristics of these foot types have been identified but reported differences in segmental foot kinematics among them has been inconsistent due to differences in neutral referencing and evaluation of only select discrete variables. This study used the radiographically-indexed Milwaukee Foot Model to evaluate differences in segmental foot kinematics among healthy adults with rectus, planus, and cavus feet based on the true bony alignment between segments. Based on the definitions of the individual foot types and due to conflicting results in previous literature, the primary study outcome was peak coronal hindfoot position during stance phase. Additionally, locally weighted regression smoothing with alpha-adjusted serial t-test analysis (LAAST) was used to compare these foot types across the entire gait cycle. Average peak hindfoot inversion was −1.6° ± 5.1°, 6.7° ± 3.5°, and 13.6° ± 4.6°, for the Planus, Rectus, and Cavus Groups, respectively. There were significant differences among all comparisons. Differences were observed between the Rectus and Planus Groups and Cavus and Planus Groups throughout the gait cycle. Additionally, the Planus Group had a premature peak velocity toward coronal varus and early transition toward valgus, likely due to a deficient windlass mechanism. This assessment of kinematic data across the gait cycle can help understand differences in dynamic foot function among foot types.  相似文献   

12.
The relative robusticity of the metatarsals in OH-8 is reviewed in light of the normal variation in metatarsal robusticity in Pan and Homo. The pattern in OH-8 is found to be fully commensurate with a striding gait.  相似文献   

13.
Metal-on-metal hip resurfacing patients demonstrate hip biomechanics closer to normal in comparison to total hip arthroplasty during gait. However, it is not clear how symmetric is the gait of hip resurfacing patients. Biomechanical data of 12 unilateral metal-on-metal hip resurfacing participants were collected during gait at a mean time of 45 months (SD 24) after surgery. Ankle, knee, hip, pelvis and trunk kinematics and kinetics of both sides were measured with a motion and force-capture system. Principal component analysis and mean hypothesis’ tests were used to compare the operated and healthy sides. The operated side had prolonged ankle eversion angle during late stance and delayed increased ankle inversion angle during early swing (p = 0.008; effect size = 0.70), increased ankle inversion moment during late stance (p = 0.001; effect size = 0.78), increased knee adduction angle during swing (p = 0.044; effect size = 0.57), decreased knee abduction moment during stance (p = 0.05; effect size = 0.40), decreased hip range of motion in the sagittal plane (p = 0.046; effect size = 0.56), decreased range of hip abduction moment during stance (p = 0.02; effect size = 0.63), increased hip range of motion in the transverse plane (p = 0.02; effect size = 0.62), decreased hip internal rotation moment during the transition from loading response to midstance (p = 0.001; effect size = 0.81) and increased trunk ipsilateral lean (p = 0.03; effect size = 0.60). Therefore, hip resurfacing patients have some degree of asymmetry in long term, which may be related to hip weakness and decreased range of motion, to foot misalignments and to strategies implemented to reduce loading on the operated hip. Interventions such as muscle strengthening and stretching, insoles and gait feedback training may help improving symmetry following hip resurfacing.  相似文献   

14.
We present a technique to combine muscle shortening and lengthening velocity information with electromyographic (EMG) profiles during gait. A biomechanical model was developed so that each muscle's length could be readily calculated over time as a function of angles of the joints it crossed. The velocity of shortening and lengthening of the muscle fiber was then calculated, and with computer graphics this information was overlaid on the EMG profiles. Thus, researchers and clinicians were not only able to interpret the processed EMG signal as level of activity (tension) but also to gain insight as to the muscles' role as generators (muscle shortening) or absorbers (muscle lengthening) of energy. Six common muscles are documented, using database profiles; soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF), and semitendinosus (ST). The protocol thus demonstrates a relatively simple technique for calculating muscle fiber velocity and for combining that velocity information with EMG activity profiles.  相似文献   

15.
Electromyography (EMG) is the standard modality for measuring muscle activity. However, the convenience and availability of low-cost accelerometer-based wearables makes mechanomyography (MMG) an increasingly attractive alternative modality for clinical applications. Literature to date has demonstrated a strong association between EMG and MMG temporal alignment in isometric and isokinetic contractions. However, the EMG-MMG relationship has not been studied in gait. In this study, the concurrence of EMG- and MMG-detected contractions in the tibialis anterior, lateral gastrocnemius, vastus lateralis, and biceps femoris muscles were investigated in children during self-paced gait. Furthermore, the distribution of signal power over the gait cycle was statistically compared between EMG-MMG modalities. With EMG as the reference, muscular contractions were detected based on MMG with balanced accuracies between 88 and 94% for all muscles except the gastrocnemius. MMG signal power differed from that of EMG during certain phases of the gait cycle in all muscles except the biceps femoris. These timing and power distribution differences between the two modalities may in part be related to muscle fascicle length changes that are unique to muscle motion during gait. Our findings suggest that the relationship between EMG and MMG appears to be more complex during gait than in isometric and isokinetic contractions.  相似文献   

16.
    
PurposeThe reliability of lower extremity muscle activation patterns has not been clearly studied in a dual-belt instrumented treadmill environment. The primary study objective was to quantify the day-to-day reliability of quadriceps, hamstrings, gastrocnemius and gluteus medius activation patterns in healthy young adult gait. Secondarily, the reliability of spatiotemporal, and knee/hip motion and moment-based gait outcomes was assessed.Scope: 20 young adults were recruited and tested on two separate days. Using standardized procedures, participants were prepared for surface electromyography and lower extremity motion capture. All individuals walked on a dual-belt instrumented treadmill while muscle activation, segment motions and ground reaction forces were recorded. Sagittal plane motion and net external sagittal and frontal plane moments were calculated. Discrete biomechanical and muscle activation measures were calculated, and non-negative matrix factorization extracted amplitude and temporal muscle activation features. Intraclass Correlation Coefficients, Standard Error of Measurement and Minimum Detectable Change were calculated.ConclusionsHigh to excellent Intraclass correlation coefficients were found between visits for most primary and secondary outcomes. The absolute and relative reliability, including Minimum Detectable Change values, provided in this study support the use of dual-belt instrumented treadmill walking as an acceptable medium to collect biomechanical and lower extremity EMG outcomes for future studies.  相似文献   

17.
    
Walking is the most common form of human locomotion. From a motor control perspective, human bipedalism makes the task of walking extremely complex. For parts of the step cycle, there is only one foot on the ground, so both balance and propulsion are required in order for the movement to proceed smoothly. One condition known to compound the difficulty of walking is the use of high heeled shoes, which alter the natural position of the foot–ankle complex, and thereby produce a chain reaction of (mostly negative) effects that travels up the lower limb at least as far as the spine. This review summarises recent studies that have examined acute and chronic effects of high heels on balance and locomotion in young, otherwise healthy women. Controversial issues, common study limitations and directions for future research are also addressed in detail.  相似文献   

18.
    
There are no direct recordings of obturator internus muscle activity in humans because of difficult access for electromyography (EMG) electrodes. Functions attributed to this muscle are based on speculation and include hip external rotation/abduction, and a role in stabilization as an “adjustable ligament” of the hip. Here we present (1) a technique to insert intramuscular EMG electrodes into obturator internus plus (2) the results of an investigation of obturator internus activity relative to that of nearby hip muscles during voluntary hip efforts in two hip positions and a weight-bearing task. Fine-wire electrodes were inserted with ultrasound guidance into obturator internus, gluteus maximus, piriformis and quadratus femoris in ten participants. Participants performed ramped and maximal isometric hip efforts (open kinetic chain) into flexion/extension, abduction/adduction, and internal/external rotation, and hip rotation to end range in standing. Analysis of the relationship between activity of the obturator internus and the other hip muscles provided evidence of limited contamination of the recordings with crosstalk. Obturator internus EMG amplitude was greatest during hip extension, then external rotation then abduction, with minimal to no activation in other directions. Obturator internus EMG was more commonly the first muscle active during abduction and external rotation than other muscles. This study describes a viable and valid technique to record obturator internus EMG and provides the first evidence of its activation during simple functions. The observation of specificity of activation to certain force directions questions the hypothesis of a general role in hip stabilisation regardless of force direction.  相似文献   

19.
The purpose of this study was to identify the gait strategies in women with mild and moderate knee osteoarthritis (OA). Forty women diagnosed with OA of the knee and 40 healthy women participated in the study. Toe-out progression angle, trunk lateral lean, hip internal abduction moment and gait speed were measured using Qualisys ProReflex System and two force plates. Principal component analysis was applied to extract features from the gait waveforms data that characterized the waveforms main modes of temporal variation. Discriminant analysis with a stepwise model was conducted to determine which strategies could best discriminate groups. According to the discriminant model, the PC2 of the internal abduction moment of the hip and the gait speed were the most discriminatory variables between the groups. The OA group showed decreased gait speed, decreased hip internal abduction moment during the loading response phase, and increased hip internal abduction moment during the mid and terminal stance phases. Interventions that may increase hip internal abduction moment, such as the strengthening of the hip abductors muscles, may benefit women with knee OA. Training slower than normal gait speeds must be considered in light of potential adverse implications on overall physical function, daily tasks, and safety.  相似文献   

20.
    
Wearable systems are becoming increasingly popular for gait assessment outside of laboratory settings. A single shoe-embedded sensor module can measure the foot progression angle (FPA) during walking. The FPA has important clinical utility, particularly in populations with knee osteoarthritis, as it is a target for biomechanical treatments. However, the validity and the day-to-day reliability of FPA measurement using wearable systems during over-ground walking has yet to be established. Two gait analysis sessions on 20 healthy adults were conducted. During both sessions, participants performed natural over-ground walking in a motion capture laboratory and on a 100 m linear section of outdoor athletics track. FPA was measured in the laboratory via marker trajectory data, while the sensor module measured FPA during the outdoor track walking. Validity was examined by comparing the laboratory- and sensor-measured average FPA. Day-to-day reliability was examined by comparing the sensor-measured FPA between the first and second gait analysis sessions. Average absolute error between motion capture and sensor measured FPA were 1.7° and 2.1° at session 1 and 2, respectively. A Bland and Altman plot indicated no systematic bias, with 95% limit of agreement widths of 4.2° – 5.1°. Intraclass correlation coefficient (ICC2k) analysis resulted in good to excellent validity (ICC = 0.89 – 0.91) and reliability (ICC = 0.95). Overall, the shoe-embedded sensor module is a valid and reliable method of measuring FPA during over-ground walking without the need for laboratory equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号