首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed a multiyear monitoring study to compare amphibian habitat quality among four natural, four restored, and six created pools. We used successful reproduction and metamorphosis of two vernal pool indicator species, the wood frog and spotted salamander, to represent desired outcomes. Ordination techniques were used to identify the aspects of habitat quality that were most correlated with desired outcomes. Previously published results indicated that pool depth, volume, and hydroperiod were among the best predictors of success, regardless of pool type. Observations in the first few years of monitoring also suggested that pools with longer hydroperiods had a greater abundance of aquatic predators of eggs and larvae of indicator species. This follow‐up study further explores and compares predator–prey relationships among pool types. We quantified within‐pool predator and prey abundance and diversity and collected another year of data on the reproductive success of indicator species. Our results confirmed that mean predator abundance was eight times higher in pools with longer hydroperiods. We documented a 96% decrease in wood frog survival rates in a semi‐permanent, natural pool following a 41% decrease in overhead canopy cover and an increase in green frog abundance. At the same time, wood frog reproductive success increased in nearby restored pools with lower predator abundance. Pools with the highest mean survival rates for the two indicator species combined were short‐ or long‐cycle pools (i.e. hydroperiod of 12–35 weeks) with low predator abundance (i.e. <1 organism L?1) and greater proportions of arthropod prey relative to other food items.  相似文献   

2.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

3.
Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs.  相似文献   

4.
Understanding the determinants and consequences of predation effort, success and prey responses is important since these factors affect the fitness of predators and prey. When predators are also invasive species, the impacts on prey can be particularly far-reaching with ultimate ecosystem-level consequences. However, predators are typically viewed as behaviourally fixed within this interaction and it is unclear how variation in predator social dynamics affects predator–prey interactions. Using the invasive eastern mosquitofish Gambusia holbrooki and a native glass shrimp Paratya australiensis in Australia, we investigated how varying levels of social conflict within predator groups influences predator–prey interactions. By experimentally manipulating group stability of G. holbrooki, we show that rates of social conflict were lower in groups with large size differences, but that routine metabolic rates were higher in groups with large size differences. Predation effort and success did not vary depending on group stability, but in stable groups predation effort by aggressive dominants was greater than subordinates. The anti-predator responses of prey to the stability of predator groups were mixed. While more prey utilized shelters when exposed to stable compared to unstable groups of predators, a greater proportion were sedentary when predator groups were unstable. Overall, this study demonstrates predator group stability is modulated by differences in body size and can influence prey responses. Further, it reveals a hidden metabolic cost of living in stable groups despite reduced overt social conflict. For invasive species management, it is therefore important to consider the behavioural and physiological plasticity of the invasive predators, whose complex social interactions and metabolic demands can modulate patterns of predator–prey interactions.  相似文献   

5.
Improving the diversity of farm systems or landscapes can lead to more effective biological control by providing refuge and alternative resources for colonising natural enemies. Within an experimental cabbage agroecosystem, we examined the effects of habitat management (i.e. herbicide use and cover crops) on pest populations and predator community structure, and report one of the first studies on the trophic links in this system using molecular gut-content analysis. In response to herbicide and cover crop management treatments designed to create different levels of habitat diversity, we quantified the abundance of two pests, Plutella xylostella Linnaeus (Lepidoptera: Plutellidae) and Pieris rapae Linnaeus (Lepidoptera: Pieridae), and predators. We designed species-specific primers to detect prey DNA in predators' guts. Pieris rapae were significantly more abundant in plots where cover crops were killed early in the season, and habitat management generated unique predator communities in response to weed management treatments. Thirty-five per cent of predators tested positive for prey DNA, and habitat management had interactive effects on predation of P. xylostella. Combined we found that habitat management has variable effects on natural enemy–pest interactions.  相似文献   

6.
Suppression of a target prey by a predator can depend on its surrounding community, including the presence of nontarget, alternative prey. Basic theoretical models of two prey species that interact only via a shared predator predict that adding an alternative prey should increase predator numbers and ultimately lower target pest densities as compared to when the target pest is the only prey. While this is an alluring prediction, it does not explain the numerous responses empirically observed. To better understand and predict the indirect interactions produced by shared predation, we explore how additional prey species affect three broad ecological mechanisms, the predator's reproductive, movement, and functional responses. Specifically, we review current theoretical models of shared predation by focusing on these mechanisms, and make testable predictions about the effects of shared predation. We find that target predation is likely to be higher in the two prey system because of predator reproduction, especially when: predators are prey limited, alternative or total prey density is high, or alternative prey are available over time. Target predation may also be greater because of predator movement, but only under certain movement rules and spatial distributions. Predator foraging behavior is most likely to cause lower target predation in the two-prey system, when per capita predation is limited by something other than prey availability. It is clear from this review that no single theoretical generalization will accurately predict community-level effects for every system. However, we can provide testable hypotheses for future empirical and theoretical investigations of indirect interactions and help enhance their potential use in biological control.  相似文献   

7.
1. One of the oldest questions in ecology is how species diversity in any given trophic level is related to the availability of essential resources that limit biomass (e.g. water, nutrients, light or prey). Researchers have tried to understand this relationship by focusing either on how diversity is influenced by the availability of resources, or alternatively, how resource abundance is influenced by species diversity. These contrasting perspectives have led to a seeming paradox '... is species diversity the cause or the consequence of resources that limit community biomass?' 2. Here we present results of an experiment that show it is possible for species diversity and resource density to exhibit reciprocal causal relationships in the same ecological system. Using a guild of ladybeetle predators and their aphid prey, we manipulated the number of predator species in field enclosures to examine how predator diversity impacts prey population size. At the same time, we manipulated the abundance of aphid prey in discrete habitat patches within each enclosure to determine how smaller-scale spatial variation in resource abundance affects the number of co-occurring predator species. 3. We found that the number of ladybeetle species added to enclosures had a significant impact on aphid population dynamics because interference competition among the predators reduced per capita rates of predation and, in turn, the overall efficiency of the predator guild. At the same time, spatial variation in aphid abundance among smaller habitat patches generated variation in the observed richness of ladybeetles because more species occurred in patches where predators aggregated in response to high aphid density. 4. The results of our experiment demonstrate that it is possible for species diversity to simultaneously be a cause and a consequence of resource density in the same ecological system, and they shed light on how this might occur for groups of mobile consumers that exhibit rapid responses to spatial and temporal variation in their prey.  相似文献   

8.
Habitat manipulation is a branch of conservation biological control in which vegetation complexity and diversity are increased in managed landscapes to provide food and other resources for arthropod natural enemies. This is often achieved by maintaining noncrop plant material such as flowering strips and beetle banks that provide natural enemies with nectar and pollen, alternative prey, shelter from disturbance, and overwintering sites. In most cases, plant material used in habitat manipulation programs is not native to the area in which it is planted. Using native plant species in conservation biological control could serve a dual function of suppressing pest arthropod outbreaks and promoting other valuable ecosystem services associated with native plant communities. We evaluated 10 plant species native to Maryland for their attractiveness to foliar and ground-dwelling natural enemies. Plants that showed particular promise were Monarda punctata, Pycnanthemum tenuifolium, and Eupatorium hyssopifolium, which generally harbored the greatest abundance of foliar predators and parasitoids, although abundance varied over time. Among ground-dwelling natural enemies, total predator and parasitoid abundance differed between plant species, but carabid and spider abundance did not. Matching certain plant species and their allied natural enemies with specific pest complexes may be enhanced by identifying the composition of natural enemy assemblages at different times of year and in both foliar and ground habitat strata.  相似文献   

9.
Antagonistic/synergistic interactions among predators foraging on the same prey have been assumed to play a major role in shaping community structure. Studies in systems with multiple predator species have shown that the strength of these interactions may not be predictable and is largely dependent on individual behavioural traits, species density and habitat complexity. Although the association of prey consumption and satiation of a foraging predator has long been recognized, there has been relatively little research on how prey availability affects multiple predators’ effects. In this work, we present a framework to investigate the variation in two coexisting/competing predators’ effects on prey risk as affected by the prey availability rate. Functional responses by each predator species were first studied in single-predator treatments. Then, the intra- and inter-specific competition was investigated by employing additive and substitutative experimental designs to highlight the nature of multiple effects. Intra- and interspecific interactions were found to be similar and there was risk reduction, and risk enhancement for the prey at intermediate and high levels, respectively, according to the multiplicative risk model (MRM). The results indicated that when similar predators are concerned, the outcomes of MRM may vary according to the functional response curve of these predators. Thus, studies involving a wide range of prey densities are required to explore the nature of interactions. Moreover, this kind of experimental data can contribute to unravelling complexities in theoretical approaches by earlier studies and ultimately promote understanding the effect of multiple predators on prey population regulation.  相似文献   

10.
Predators and prey are often engaged in a game where their expected fitnesses are affected by their relative spatial distributions. Game models generally predict that when predators and prey move at similar temporal and spatial scales that predators should distribute themselves to match the distribution of the prey's resources and that prey should be relatively uniformly distributed. These predictions should better apply to sit-and-pursue and sit-and-wait predators, who must anticipate the spatial distributions of their prey, than active predators that search for their prey. We test this with an experiment observing the spatial distributions and estimating the causes of movements between patches for Pacific tree frog tadpoles (Pseudacris regilla), a sit-and-pursue dragonfly larvae predator (Rhionaeschna multicolor), and an active salamander larval predator (Ambystoma tigrinum mavortium) when a single species was in the arena and when the prey was with one of the predators. We find that the sit-and-pursue predator favors patches with more of the prey's algae resources when the prey is not in the experimental arena and that the prey, when in the arena with this predator, do not favor patches with more resources. We also find that the active predator does not favor patches with more algae and that prey, when with an active predator, continue to favor these higher resource patches. These results suggest that the hunting modes of predators impact their spatial distributions and the spatial distributions of their prey, which has potential to have cascading effects on lower trophic levels.  相似文献   

11.
Practices that enhance abundance and diversity of generalist predators are often employed with the objective of improving biological control of insect pests. Ground beetles and other predators can prey on blueberry maggot, an important pest of blueberries, when mature larvae pupate in the ground. We conducted mesocosm and field experiments to determine if Pterostichus melanarius, a common predatory ground beetle, lowers maggot numbers in compost mulch or when predator and alternative prey abundances are manipulated. At background (field) densities of alternative prey, increasing densities of P. melanarius did not significantly reduce pest numbers in mesocosms containing compost or soil. When alternative prey were removed from compost, beetles reduced pest numbers by up to 35%. In field experiments, maggot numbers were higher when beetles and other predators were excluded from soil plots, but beetle exclusion had no effect in compost plots where both predator and alternative prey numbers were high. Our results indicate that there can be some reduction of blueberry maggot by P. melanarius and other potential predators when there are few alternative prey. However, despite attracting large numbers of predators compost mulch did not lead to a significant reduction in blueberry maggot; in fact, the high abundance of alternative food associated with compost appeared to interfere with beetle predation on blueberry maggot.  相似文献   

12.
Food availability can strongly affect predator-prey dynamics. When change in habitat condition reduces the availability of one prey type, predators often search for other prey, perhaps in a different habitat. Interactions between behavioural and morphological traits of different prey may influence foraging success of visual predators through trait-mediated indirect interactions (TMIIs), such as prey activity and body coloration. We tested the hypothesis that foraging success of stream-dwelling cutthroat trout (Onchorhyncus clarki) on cryptically coloured, less-active benthic prey (larval mayfly; Paraleptophebia sp.) can be enhanced by the presence of distinctly coloured, active prey (larval stonefly shredder; Despaxia augusta). Cutthroat trout preyed on benthic insects when drifting invertebrates were unavailable. When stonefly larvae were present, the trout ate most of the stoneflies and also consumed a higher proportion of mayflies than under mayfly only treatment. The putative mechanism is that active stonefly larvae supplied visual cues to the predator that alerted trout to the mayfly larvae. Foraging success of visual predators on cryptic prey can be enhanced by distinctly coloured, active benthic taxa through unidirectional facilitation to the predators, which is a functional change of interspecific interaction caused by a third species. This study suggests that prey-predator facilitation through TMIIs can modify species interactions, affecting community dynamics.  相似文献   

13.
Analysis of predator–prey interactions is a core concept of animal ecology, explaining structure and dynamics of animal food webs. Measuring the functional response, i.e. the intake rate of a consumer as a function of prey density, is a powerful method to predict the strength of trophic links and assess motives of prey choice, particularly in arthropod communities. However, due to their reductionist set‐up, functional responses, which are based on laboratory feeding experiments, may not display field conditions, possibly leading to skewed results. Here, we tested the validity of functional responses of centipede predators and their prey by comparing them with empirical gut content data from field‐collected predators. Our predator–prey system included lithobiid and geophilomorph centipedes, abundant and widespread predators of forest soils and their soil‐dwelling prey. First, we calculated the body size‐dependent functional responses of centipedes using a published functional response model in which we included natural prey abundances and animal body masses. This allowed us to calculate relative proportions of specific prey taxa in the centipede diet. In a second step, we screened field‐collected centipedes for DNA of eight abundant soil‐living prey taxa and estimated their body size‐dependent proportion of feeding events. We subsequently compared empirical data for each of the eight prey taxa, on proportional feeding events with functional response‐derived data on prey proportions expected in the gut, showing that both approaches significantly correlate in five out of eight predator–prey links for lithobiid centipedes but only in one case for geophilomorph centipedes. Our findings suggest that purely allometric functional response models, which are based on predator–prey body size ratios are too simple to explain predator–prey interactions in a complex system such as soil. We therefore stress that specific prey traits, such as defence mechanisms, must be considered for accurate predictions.  相似文献   

14.
Apex predators can limit the abundance and behaviour of mesopredators, thereby reducing predation on smaller species. We know less about whether native apex predators are effective in suppressing invasive mesopredators, a major global driver of vertebrate extinctions. We use the severe disease‐induced decline of an apex predator, the Tasmanian devil, as a natural experiment to test whether devils limit abundance of invasive feral cats and in turn protect smaller native prey. Cat abundance was c. 58% higher where devils had declined, which in turn negatively affected a smaller native prey species. Devils had a stronger limiting effect on cats than on a native mesopredator, suggesting apex predators may have stronger suppressive effects on evolutionarily naive species than coevolved species. Our results highlight how disease in one species can affect the broader ecosystem. We show that apex predators not only regulate native species but can also confer resistance to the impacts of invasive populations. Apex predators could therefore be a powerful but underutilised tool to prevent biodiversity loss.  相似文献   

15.
Most people agree that arthropod natural enemies are good for insect pest management in agriculture. However, the population suppressive effects of predators, which consume their prey and often leave no direct evidence of their activity, are more difficult to study than the effects of parasitoids, which can be sampled from host populations relatively easily. We critically reviewed field studies which investigated the relationship between lepidopteran pests and their associated predatory fauna, published in 11 leading entomology and applied ecology journals between 2003 and 2008. Each study was appraised to determine whether or not it demonstrated that predators had an impact on prey (pest) populations and, if so, whether it was conducted at an ecological scale relevant to pest management. Less than half (43%) of the 54 field studies adopted methodologies that allowed the impact of predators on target pest populations to be measured. Furthermore, 76% of the studies were conducted at the scale of experimental plots rather than at the ecological scale which determines pest and predator population dynamics or at which pest‐management decisions are made. In almost one‐third of the studies, predator abundance and/or diversity was measured, but this metric was not linked with pest suppression or mortality. We conclude that much current research does not provide evidence that predatory arthropods suppress target lepidopteran pest populations and, consequently, that it has little relevance to pest management. Well‐designed ecological experiments combined with recent advances in molecular techniques to identify predator diets and the emergence of organic agriculture provide both the mechanisms and a platform upon which many predator–prey interactions can be investigated at a scale relevant to pest management. However, benefits will only be reaped from this opportunity if current approaches to research are changed and relevant ecological data are collected at appropriate ecological scales.  相似文献   

16.
Prey from the decomposer subsystem may help sustain predator populations in arable fields. Adding organic residues to agricultural systems may therefore enhance pest control. We investigated whether resource addition (maize mulch) strengthens aboveground trophic cascades in winter wheat fields. Evaluating the flux of the maize-borne carbon into the food web after 9 months via stable isotope analysis allowed differentiating between prey in predator diets originating from the above- and belowground subsystems. Furthermore, we recorded aphid populations in predator-reduced and control plots of no-mulch and mulch addition treatments. All analyzed soil dwelling species incorporated maize-borne carbon. In contrast, only 2 out of 13 aboveground predator species incorporated maize carbon, suggesting that these 2 predators forage on prey from the above- and belowground systems. Supporting this conclusion, densities of these two predator species were increased in the mulch addition fields. Nitrogen isotope signatures suggested that these generalist predators in part fed on Collembola thereby benefiting indirectly from detrital resources. Increased density of these two predator species was associated by increased aphid control but the identity of predators responsible for aphid control varied in space. One of the three wheat fields studied even lacked aphid control despite of mulch-mediated increased density of generalist predators. The results suggest that detrital subsidies quickly enter belowground food webs but only a few aboveground predator species include prey out of the decomposer system into their diet. Variation in the identity of predator species benefiting from detrital resources between sites suggest that, depending on locality, different predator species are subsidised by prey out of the decomposer system and that these predators contribute to aphid control. Therefore, by engineering the decomposer subsystem via detrital subsidies, biological control by generalist predators may be strengthened.  相似文献   

17.
Many predators and parasites eavesdrop on the communication signals of their prey. Eavesdropping is typically studied as dyadic predator–prey species interactions; yet in nature, most predators target multiple prey species and most prey must evade multiple predator species. The impact of predator communities on prey signal evolution is not well understood. Predators could converge in their preferences for conspicuous signal properties, generating competition among predators and natural selection on particular prey signal features. Alternatively, predator species could vary in their preferences for prey signal properties, resulting in sensory-based niche partitioning of prey resources. In the Neotropics, many substrate-gleaning bats use the mate-attraction songs of male katydids to locate them as prey. We studied mechanisms of niche partitioning in four substrate-gleaning bat species and found they are similar in morphology, echolocation signal design and prey-handling ability, but each species preferred different acoustic features of male song in 12 sympatric katydid species. This divergence in predator preference probably contributes to the coexistence of many substrate-gleaning bat species in the Neotropics, and the substantial diversity in the mate-attraction signals of katydids. Our results provide insight into how multiple eavesdropping predator species might influence prey signal evolution through sensory-based niche partitioning.  相似文献   

18.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

19.
Summary In Australia, controlling introduced predators across large areas is unlikely to be successful without careful consideration of the predator's ecology, the economics of the control exercise and the distribution of the taxa to be protected from the predator. Inadequate strategic planning in pest control is commonplace and there is a need for better methods for determining where, when and how to control predators. The present paper describes a method (currently being introduced into planning programmes) of using areas of high prey species integrity (conservation kernels) to identify strategically optimal areas for predator control (particularly Red Fox, Vulpes vulpes ), across broad landscapes. These landscapes are selected using a geographical information system and a combination of predictive habitat models and records of threatened species at risk of predation by the Red Fox, to identify sites of biological wealth. We propose this method as a first step in developing a strategic predator control plan.  相似文献   

20.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号