首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The endosperm is at the center of successful seed formation in flowering plants. Being itself a product of fertilization, it is devoted to nourish the developing embryo and typically possesses a triploid genome consisting of two maternal and one paternal genome complement. Interestingly, endosperm development is controlled by epigenetic mechanisms conferring parent-of-origin-dependent effects that influence seed development. In the model plant Arabidopsis thaliana, we have previously described an endosperm-specific heterochromatin fraction, which increases with higher maternal, but not paternal, genome dosage. Here, we report a detailed analysis of chromosomal arrangement and association frequency in endosperm nuclei. We found that centromeric FISH signals in isolated nuclei show a planar alignment that may results from a semi-rigid, connective structure between chromosomes. Importantly, we found frequent pairwise association of centromeres, chromosomal segments, and entire arms of chromosomes in 3C endosperm nuclei. These associations deviate from random expectations predicted by numerical simulations. Therefore, we suggest a non-random chromosomal organization in the triploid nuclei of Arabidopsis endosperm. This contrasts with the prevailing random arrangement of chromosome territories in somatic nuclei. Based on observations on a series of nuclei with varying parental genome ratios, we propose a model where chromosomes associate pairwise involving one maternal and one paternal complement. The functional implications of this predicted chromosomal arrangement are discussed.  相似文献   

3.
Gene expression can be silenced by proximity to heterochromatin blocks containing centromeric alpha-satellite DNA. This has been shown experimentally through cis-acting chromosome rearrangements resulting in linear genomic proximity, or through trans-acting changes resulting in intranuclear spatial proximity. Although it has long been been established that centromeres are nonrandomly distributed during interphase, little is known of what determines the three-dimensional organization of these silencing domains in the nucleus. Here, we propose a model that predicts the intranuclear positioning of centromeric heterochromatin for each individual chromosome. With the use of fluorescence in situ hybridization and confocal microscopy, we show that the distribution of centromeric alpha-satellite DNA in human lymphoid cells synchronized at G(0)/G(1) is unique for most individual chromosomes. Regression analysis reveals a tight correlation between nuclear distribution of centromeric alpha-satellite DNA and the presence of G-dark bands in the corresponding chromosome. Centromeres surrounded by G-dark bands are preferentially located at the nuclear periphery, whereas centromeres of chromosomes with a lower content of G-dark bands tend to be localized at the nucleolus. Consistent with the model, a t(11; 14) translocation that removes G-dark bands from chromosome 11 causes a repositioning of the centromere, which becomes less frequently localized at the nuclear periphery and more frequently associated with the nucleolus. The data suggest that "chromosomal environment" plays a key role in the intranuclear organization of centromeric heterochromatin. Our model further predicts that facultative heterochromatinization of distinct genomic regions may contribute to cell-type specific patterns of centromere localization.  相似文献   

4.
5.
Heterochromatin has been traditionally regarded as a genomic wasteland, but in the last three decades extensive genetic and molecular studies have shown that this ubiquitous component of eukaryotic chromosomes may perform important biological functions. In D. melanogaster, about 30 genes that are essential for viability and/or fertility have been mapped to the heterochromatin of the major autosomes. Thus far, the known essential genes exhibit a peculiar molecular organization. They consist of single-copy exons, while their introns are comprised mainly of degenerate transposons. Moreover, about one hundred predicted genes that escaped previous genetic analyses have been associated with the proximal regions of chromosome arms but it remains to be determined how many of these genes are actually located within the heterochromatin. In this overview, we present available data on the mapping, molecular organization and function of known vital genes embedded in the heterochromatin of chromosomes 2 and 3. Repetitive loci, such as Responder and the ABO elements, which are also located in the heterochromatin of chromosome 2, are not discussed here because they have been reviewed in detail elsewhere.  相似文献   

6.
7.
In a previous study, we observed that the variations in chromosome size are due to uneven expansion and contraction by comparing the structures and sizes of a pair of homoeologous high-resolution cytogenetic maps of chromosomes 12A and 12D in tetraploid cotton. To reveal the variation at the sequence level, in the present paper, we sequenced two pairs of homoeologous bacterial artificial chromosomes derived from high- to low-variable genomic regions. Comparisons of their sequence variations confirmed that the highly conserved and divergent sequences existed in the distal and pericentric regions, e.g., high- and low-variable genome size regions in these two pairs of cotton homoeologous chromosomes. Sequence analysis also confirmed that the differential accumulation of Gossypium retrotransposable gypsy-like element (Gorge3) accounted for the main contributions for the size difference between the pericentric regions. By fluorescence in situ hybridization analysis, we found that Gorge3 has a bias distribution in the AT/A proximal regions and is associated with the heterochromatin along the chromosomes in the entire Gossypium genome. These results indicate that, between AT/A and DT/D genomes, the distal and pericentric regions usually possess high level of sequence conservation and divergence, respectively, in cotton.  相似文献   

8.
Summary By use of a method for regenerating wheat plants (Triticum aestivum L.) from cells from long-term suspension culture, the chromosome complement and stability of cultured cells of cv. Mustang were examined. Massive chromosome restructuring and genomic rearrangements were detected by HCl−KOH-Giemsa banding techniques. Chromosome structural variations involved mainly heterochromatin and centromeric regions. These included B genome chromosome elimination; heterochromatin amplification; megachromosomes and extrachromosomal DNA particles; translocations and deletions; telocentric, dicentric, and multicentric chromosomes; and somatic pairing and crossing over. At least 65 break-fusion sites were identified. Most of the sites were located in the B genome chromosomes (42 sites, 64.6%); 36.9% (20 sites) were located in the A genome chromosomes; and the fewest (3 sites, 4.6%) were detected in the D genome. Most of the chromosome break-fusion is in the heterochromatin and centromeric regions. The B genome chromosomes appeared to be eliminated nonrandomly, and the stability of the genome may vary among the genotypes and depend on culture duration. We also checked chromosome number of 1-year-old shoot-competent cells. Only 20% of the cells still had 2n=42 chromosomes. Most of the cells (60%) were hyperploid. These observed variations describe the types of tissue-culture-induced variations and suggest the unsuitability of using wheat cells from long-term cultures for genetic transformation experiments.  相似文献   

9.
CR Bauer  TA Hartl  G Bosco 《PLoS genetics》2012,8(8):e1002873
The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase.  相似文献   

10.
The organization of chromosomes into euchromatin and heterochromatin is one of the most enigmatic aspects of genome evolution. For a long time, heterochromatin was considered to be a genomic wasteland, incompatible with gene expression. However, recent studies--primarily conducted in Drosophila melanogaster--have shown that this peculiar genomic component performs important cellular functions and carries essential genes. New research on the molecular organization, function and evolution of heterochromatin has been facilitated by the sequencing and annotation of heterochromatic DNA. About 450 predicted genes have been identified in the heterochromatin of D. melanogaster, indicating that the number of active genes is higher than had been suggested by genetic analysis. Most of the essential genes are still unknown at the molecular level, and a detailed functional analysis of the predicted genes is difficult owing to the lack of mutant alleles. Far from being a peculiarity of Drosophila, heterochromatic genes have also been found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Oryza sativa and Arabidopsis thaliana, as well as in humans. The presence of expressed genes in heterochromatin seems paradoxical because they appear to function in an environment that has been considered incompatible with gene expression. In the future, genetic, functional genomic and proteomic analyses will offer powerful approaches with which to explore the functions of heterochromatic genes and to elucidate the mechanisms driving their expression.  相似文献   

11.
Cotton is a model system for studying polyploidization, genomic organization, and genome-size variation because the allotetraploid was formed 1-2 million years ago, which is old enough for sequence divergence but relatively recent to maintain genome stability. In spite of characterizing random genomic sequences in many polyploidy plants, the cytogenetic and sequence data that decipher homoeologous chromosomes are very limited in allopolyploid species. Here, we reported comprehensive analyses of integrated cytogenetic and linkage maps of homoeologous chromosomes 12A and 12D in allotetraploid cotton using fluorescence in situ hybridization and a large number of bacterial artificial chromosomes that were anchored by simple sequence repeat markers in the corresponding linkage maps. Integration of genetic loci into physical localizations showed considerable variation of genome organization, structure, and size between 12A and 12D homoeologous chromosomes. The distal regions of the chromosomes displayed relatively lower levels of structural and size variation than other regions of the chromosomes. The highest level of variation was found in the pericentric regions in the long arms of the two homoeologous chromosomes. The genome-size difference between A and D sub-genomes in allotetraploid cotton was mainly associated with uneven expansion or contraction between different regions of homoeologous chromosomes. As an attempt for studying on the polyploidy homoeologous chromosomes, these results are of general interest to the understanding and future sequencing of complex genomes in plant species.  相似文献   

12.
Labelled RNA preparations (total newly synthesized RNA, as well as stable cytoplasmic RNA) isolated from a cell culture of D. melanogaster were hybridized in situ with polytene chromosomes. Apart from the nucleolus, in all cases the regions adjacent to the chromocentre in the polytene chromosomes and the intercalary heterochromatin regions in the X chromosome and the autosomes are the most intensively labelled. In the case of asynapsis of polytene chromosomes in heterozygotes the label is detected in a number of intercalary heterochromatin sites in one homologue only ("the asymmetrical label"). The same kind of radioactivity distribution in intercalary heterochromatin regions was observed after a hybridization of polytene chromosomes with cloned DNA fragments (Ananiev et al., 1978, 1979) coding for the abundant classes of messenger RNA (Ilyin et al., 1978) in a cultured D. melanogaster cells. In some regions of intercalary heterochromatin which do not contain these fragments the "'asymmetrical" type of label distribution is observed after hybridization with cell RNA. - These results lead one to regard the intercalary heterochromatin regions as "nests" comprising different types of actively transcribable genes, the composition of each nest varying in different stocks of D. melanogaster.  相似文献   

13.
Durica DS  Krider HM 《Genetics》1978,89(1):37-64
Interspecific hybrids of D. melanogaster and D. simulans normally exhibit a secondary constriction only at the D. melanogaster nucleolus organizer (NO). This phenomenon, termed nucleolar dominance, occurs only when the NO-bearing sex chromosomes of both species are present in conjunction. Experiments were initiated to localize regions on the sex chromosomes of D. melanogaster involved in mediating this suppression. Sex chromosome heterochromatic rearrangements and deficiencies were introduced into F1 hybrids and their corresponding effect on simulans NO constriction formation was examined in hybrid mitotic neuroblast tissue. Sex chromosomes deficient for both the D. melanogaster NO and adjacent heterochromatin were unable to restrict the formation of a constriction at the D. simulans NO. The presence of a D. melanogaster NO, however, was not sufficient for the establishment of nucleolar dominance. Results from an array of NO-bearing X and Y chromosome rearrangements and deficiencies indicate that at least one heterochromatic region, proximal to the NO on the D. melanogaster X and distal to the NO on the D. melanogaster Y, affects the induction of this interchromosomal phenomenon.  相似文献   

14.
The organization of chromosomes into euchromatin and heterochromatin is amongst the most important and enigmatic aspects of genome evolution. Constitutive heterochromatin is a basic yet still poorly understood component of eukaryotic chromosomes, and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Although recent evidence indicates that the presence of transcribed genes in constitutive heterochromatin is a conserved trait that accompanies the evolution of eukaryotic genomes, the term heterochromatin is still considered by many as synonymous of gene silencing. In this paper, we comprehensively review data that provide a clearer picture of transcribed sequences within constitutive heterochromatin, with a special emphasis on Drosophila and humans.  相似文献   

15.
16.
To ensure genomic integrity, the genome must be duplicated exactly once per cell cycle. Disruption of replication licensing mechanisms may lead to re-replication and genomic instability. Cdt1, also known as Double-parked (Dup) in Drosophila, is a key regulator of the assembly of the pre-replicative complex (pre-RC) and its activity is strictly limited to G1 by multiple mechanisms including Cul4-Ddb1 mediated proteolysis and inhibition by geminin. We assayed the genomic consequences of disregulating the replication licensing mechanisms by RNAi depletion of geminin. We found that not all origins of replication were sensitive to geminin depletion and that heterochromatic sequences were preferentially re-replicated in the absence of licensing mechanisms. The preferential re-activation of heterochromatic origins of replication was unexpected because these are typically the last sequences to be duplicated in a normal cell cycle. We found that the re-replication of heterochromatin was regulated not at the level of pre-RC activation, but rather by the formation of the pre-RC. Unlike the global assembly of the pre-RC that occurs throughout the genome in G1, in the absence of geminin, limited pre-RC assembly was restricted to the heterochromatin by elevated cyclin A-CDK activity. These results suggest that there are chromatin and cell cycle specific controls that regulate the re-assembly of the pre-RC outside of G1.  相似文献   

17.
18.
Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.  相似文献   

19.

Background  

Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s) targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation.  相似文献   

20.
BLASTX alignment between 189.5 Mb of rice genomic sequence and translated Arabidopsis thaliana annotated coding sequences (CDS) identified 60 syntenic regions involving 4–22 rice orthologs covering ≤3.2 cM (centiMorgan). Most regions are <3 cM in length. A detailed and updated version of a table representing these regions is available on our web site. Thirty-five rice loci match two distinct A.thaliana loci, as expected from the duplicated nature of the A.thaliana genome. One A.thaliana locus matches two distinct rice regions, suggesting that rice chromosomal sequence duplications exist. A high level of rearrangement characterizing the 60 syntenic regions illustrates the ancient nature of the speciation between A.thaliana and rice. The apparent reduced level of microcollinearity implies the dispersion to new genomic locations, via transposon activity, of single or small clusters of genes in the rice genome, which represents a significant additional effector of plant genome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号