首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, NAD+-dependent formate dehydrogenase (FDH), encoded by fdh gene from Candida boidinii was successfully displayed on Escherichia coli cell surface using ice nucleation protein (INP) from Pseudomonas borealis DL7 as an anchoring protein. Localization of matlose binding protein (MBP)-INP-FDH fusion protein on the E. coli cell surface was characterized by SDS-PAGE and enzymatic activity assay. FDH activity was monitored through the oxidation of formate catalyzed by cell-surface-displayed FDH with its cofactor NAD+, and the production of NADH can be detected spectrometrically at 340 nm. After induction for 24 h in Luria-Bertani medium containing isopropyl-β-d-thiogalactopyranoside, over 80% of MBP-INP-FDH fusion protein present on the surface of E. coli cells. The cell-surface-displayed FDH showed optimal temperature of 50 °C and optimal pH of 9.0. Additionally, the cell-surface-displayed FDH retained its original enzymatic activity after incubation at 4 °C for one month with the half-life of 17 days at 40 °C and 38 h at 50 °C. The FDH activity could be inhibited to different extents by some transition metal ions and anions. Moreover, the E. coli cells expressing FDH showed different tolerance to solvents. The recombinant whole cell exhibited high formate specificity. Finally, the E. coli cell expressing FDH was used to assay formate with a wide linear range of 5–700 μM and a low limit of detection of 2 μM. It is anticipated that the genetically engineered cells may have a broad application in biosensors, biofuels and cofactor regeneration system.  相似文献   

2.
The development of lignocellulose as a sustainable resource for the production of fuels and chemicals will rely on technology capable of converting the raw materials into useful compounds; some such transformations can be achieved by biological processes employing engineered microorganisms. Towards the goal of valorizing the hemicellulose fraction of lignocellulose, we designed and validated a set of pathways that enable efficient utilization of pentoses for the biosynthesis of notable two-carbon products. These pathways were incorporated into Escherichia coli, and engineered strains produced ethylene glycol from various pentoses, including simultaneously from D-xylose and L-arabinose; one strain achieved the greatest reported titer of ethylene glycol, 40 g/L, from D-xylose at a yield of 0.35 g/g. The strategy was then extended to another compound, glycolate. Using D-xylose as the substrate, an engineered strain produced 40 g/L glycolate at a yield of 0.63 g/g, which is the greatest reported yield to date.  相似文献   

3.
In this study, we describe a novel method for producing valuable chemicals from glucose and xylose in Escherichia coli. The notable features in our method are avoidance of plasmids and expensive inducers for foreign gene expression to reduce production costs; foreign genes are knocked into the chromosome, and their expression is induced with xylose that is present in most biomass feedstock. As loci for the gene knock-in, lacZYA and some pseudogenes are chosen to minimize unexpected effects of the knock-in on cell physiology. The promoter of xylF is inducible with xylose and is combined with the T7 RNA polymerase–T7 promoter system to ensure strong gene expression. This expression system was named BICES (biomass-inducible chromosome-based expression system). As examples of BICES application, 2,3-butanediol and acetoin were successfully produced from glucose and xylose, and the maximal concentrations reached 54 g L−1 [99.6% in (R,S)-form] and 31 g L−1, respectively. 2,3-Butanediol and acetoin are industrially important chemicals that are, at present, produced primarily through petrochemical processes. To demonstrate usability of BICES in practical situations, we produced these chemicals from a saccharified cedar solution. From these results, we can conclude that BICES is suitable for practical production of valuable chemicals from biomass.  相似文献   

4.
《Process Biochemistry》2007,42(5):856-862
N-Acylamino acid racemase (NAAAR) gene of Deinococcus radiodurans BCRC12827 was cloned into expression vector pQE30 to generate pQE-naaar and expressed in recombinant Escherichia coli JM109. The expressed enzyme purified from the crude cell extract of IPTG-induced E. coli JM109 (pQE-naaar) exhibited high racemization activity to N-carbamoyl-l-homophenylalanine (NCa-l-HPA) and N-carbamoyl-d-homophenylalanine (NCa-d-HPA) with specific activities of 1.91 U/mg protein and 1.31 U/mg protein, respectively. To develop a recombinant E. coli whole cell system for the conversion of racemic NCa-HPA to l-homophenylalanine (l-HPA), naaar gene from D. radiodurans and l-N-carbamoylase (LNCA) gene from Bacillus kaustophilus BCRC11223 were cloned and coexpressed in E. coli cells. Recombinant cells treated with 0.5% toluene at 30 °C for 30 min exhibited enhanced NAAAR and LNCA activities, which are about 20- and 60-fold, respectively, higher than those of untreated cells. Using toluene-permeabilized recombinant E. coli cells, a maximal productivity of 7.5 mmol l-HPA/l h with more than 99% yield could be obtained from 150 mmol racemic NCa-HPA. Permeabilized cells also showed considerable stability in the bioconversion process using 10 mmol racemic NCa-HPA as substrate, no significantly decrease in conversion yield for l-HPA was found in the eight cycles.  相似文献   

5.
BackgroundAn amino alcohol dehydrogenase gene (RE_AADH) from Rhodococcus erythropolis BCRC 10909 has been used for the conversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-phenylephrine [(S)-PE]. However RE_AADH uses NADPH as cofactor, and only limited production of (S)-PE from HPMAE is achieved.MethodsA short-chain dehydrogenase/reductase gene (SQ_SDR) from Serratia quinivorans BCRC 14811 was expressed in Escherichia coli BL21 (DE3) for the conversion of HPMAE to (S)-PE.ResultsThe SQ_SDR enzyme was capable of converting HPMAE to (S)-PE in the presence of NADH and NADPH, with specific activities of 26.5 ± 2.3 U/mg protein and 0.24 ± 0.01 U/mg protein, respectively, at 30 °C and at a pH of 7.0. The E. coli BL21 (DE3), expressing NADH-preferring SQ_SDR, converted HPMAE to (S)-PE with more than 99% enantiomeric excess, a conversion yield of 86.6% and a productivity of 20.2 mmol/l h, which was much higher than our previous report using E. coli NovaBlue expressing NADPH-dependent RE_AADH as the biocatalyst.ConclusionThe SQ_SDR enzyme with its high catalytic activity and strong preference for NADH as a cofactor provided a significant advantage in bioreduction.  相似文献   

6.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

7.
Enantiopure l-tert-leucine (l-Tle) was synthesized through reductive amination of trimethylpyruvate catalyzed by cell-free extracts of recombinant Escherichia coli coexpressing leucine dehydrogenase (LeuDH) and formate dehydrogenase (FDH). The leudh gene from Lysinibacillus sphaericus CGMCC 1.1677 encoding LeuDH was cloned and coexpressed with NAD+-dependent FDH from Candida boidinii for NADH regeneration. The batch reaction conditions for the synthesis of l-Tle were systematically optimized. Two substrate feeding modes (intermittent and continuous) were addressed to alleviate substrate inhibition and thus improve the space-time yield. The continuous feeding process was conveniently performed in water at an overall substrate concentration up to 1.5 M, with both conversion and ee of >99% and space-time yield of 786 g L−1 d−1, respectively. Furthermore, the preparation was successfully scaled up to a 1 L scale, demonstrating the developed procedure showed a great industrial potential for the production of enantiopure l-Tle.  相似文献   

8.
C2-symmetric diols have been shown to be highly potent against HIV-1 protease (PR). However, gaining access to these compounds has been hampered by the need of multistep solution-phase reactions which are often tedious and inefficient. In this Letter, we have disclosed a solid-phase strategy for rapid preparation of small molecule-based, symmetric and asymmetric diols as potential HIV-1 protease inhibitors. Upon biological screening, we found one of them, SYM-5, to be a potent and selective inhibitor (Ki = 400 nM) against HIV-1 protease.  相似文献   

9.
5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the recombinant E. coli WL3110 strain expressing the Pseudomonas putida davAB genes encoding delta-aminovaleramidase and lysine 2-monooxygenase, respectively, were cultured in a medium containing 20 g/L of glucose and 10 g/L of l-lysine, 3.6 g/L of 5AVA was produced by converting 7 g/L of l-lysine. When the davAB genes were introduced into recombinant E. coli strainXQ56allowing enhanced l-lysine synthesis, 0.27 and 0.5 g/L of 5AVA were produced directly from glucose by batch and fed-batch cultures, respectively. Further conversion of 5AVA into glutarate could be demonstrated by expression of the P. putida gabTD genes encoding 5AVA aminotransferase and glutarate semialdehyde dehydrogenase. When recombinant E. coli WL3110 strain expressing the davAB and gabTD genes was cultured in a medium containing 20 g/L glucose, 10 g/L l-lysine and 10 g/L α-ketoglutarate, 1.7 g/L of glutarate was produced.  相似文献   

10.
Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5 kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100 kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24 h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24 h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220 ± 73% signal change (n = 4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0–400 mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay.  相似文献   

11.
Polyphenol oxidases (PPOs) are copper-containing industrially important enzymes that catalyze the synthesis of many commercially important products by using polyphenols as substrate. Camellia sinensis polyphenol oxidase (CsPPO) is interesting because it oxidizes epicatechins to yield theaflavins and thearubigins. The present study aimed to optimize the expression of CsPPO in Escherichia coli. Because CsPPO had a large number of E. coli rare codons, it yielded a poor quantity of protein in E. coli Rosetta™ 2 cells, which have additional tRNAs for E. coli rare codons. Thus, synthetically constructed codon-optimized CsPPO was cloned into pET-47b(+) vector and expressed in a bacterial host. Ectopic expression led to the formation of inclusion bodies. However, extensive standardization of buffers and methods of refolding such as dialysis, on-column refolding, and rapid dilution yielded active PPO from solubilized inclusion bodies with copper content of 0.880 ± 0.095 atom/molecule of protein.Experimental data produced maximum PPO activity in a rapid dilution buffer containing 0.5 M L-arginine. Refolded CsPPO had an optimum pH of 5.0 and Km values of 3.10, 0.479, and 0.314 mM, and a Vmax of 163.9, 82.64, and 142.8 U/mg of protein for catechol, catechin, and epicatechin, respectively.  相似文献   

12.
The adhesive domain of SdrD from Staphylococcus aureus was solubly expressed in Escherichia coli in high yield. After a series of purification steps, the purified protein was >95% pure, which was SdrD from S. aureus identified by SDS–PAGE and MALDI-TOF MS. Crystals were grown at 18 °C using 25% polyethylene glycol 3350 as precipitant. Diffraction by the crystal extends to 1.65 Å resolution, and the crystal belongs to the space group C2, with the unit cell parameters a = 133.3, b = 58.3, c = 112.3 Å, α = 90.00, β = 111.14, γ = 90.00.  相似文献   

13.
《Process Biochemistry》2010,45(4):613-616
Corncob acid hydrolysate, detoxed by sequently boiling, overliming and activated charcoal adsorption, was used for 2,3-butanediol production by Klebsiella oxytoca ACCC 10370. The effects of acetate in hydrolysate and pH on 2,3-butanediol production were investigated. It was found that acetic acid in hydrolysate inhibited the growth of K. oxytoca while benefited the 2,3-butanediol yield. With the increase in acetic acid concentration in medium from 0 to 4 g/l, the lag phase was prolonged and the specific growth rate decreased. The acetic acid inhibition on cell growth can be alleviated by adjusting pH to 6.3 prior to fermentation and a substrate fed-batch strategy with a low initial acetic acid concentration. Under the optimum condition, a maximal 2,3-butanediol concentration of 35.7 g/l was obtained after 60 h of fed-batch fermentation, giving a yield of 0.5 g/g reducing sugar and a productivity of 0.59 g/h l.  相似文献   

14.
Current strategies for marine pollution monitoring are based on the integration of chemical and biological techniques. The sea urchin embryo-larval bioassays are among the biological methods most widely used worldwide. Cryopreservation of early embryos of sea urchins could provide a useful tool to overcome one of the main limitations of such bioassays, the availability of high quality biological material all year round. The present study aimed to determine the suitability of several permeant (dimethyl sulfoxide, Me2SO; propylene glycol, PG; and ethylene glycol, EG) and non-permeant (trehalose, TRE; polyvinylpyrrolidone, PVP) cryoprotectant agents (CPAs) and their combination, for the cryopreservation of eggs and embryos of the sea urchin Paracentrotus lividus. On the basis of the CPAs toxicity, PG and EG, in combination with PVP, seem to be most suitable for the cryopreservation of P. lividus eggs and embryos. Several freezing procedures were also assayed. The most successful freezing regime consisted on cooling from 4 to −12 °C at 1 °C/min, holding for 2 min for seeding, cooling to −20 °C at 0.5 °C/min, and then cooling to −35 °C at 1 °C/min. Maximum normal larvae percentages of 41.5% and 68.5%, and maximum larval growth values of 42.9% and 60.5%, were obtained for frozen fertilized eggs and frozen blastulae, respectively.  相似文献   

15.
In this work, three novel genes encoding di-d-fructofuranose-1,2′:2,1′-dianhydride (DFA I)-forming inulin fructotransferases (IFTases) from Nocardiaceae family, including Nocardioides luteus, Nocardioides sp. JS614, and Nocardioidaceae bacterium Broad-1, were cloned and expressed in Escherichia coli. The recombinant IFTases from N. luteus (NoluIFTase), Nocardioides sp. JS614 (NospIFTase), and N. bacterium Broad-1 (NobaIFTase) were purified, identified, and characterized. SDS-PAGE analysis showed that they had molecular weights of approximately 41–42 kDa, while gel filtration analysis indicated that their native molecular weights ranged from 50 to 62 kDa, suggesting that the three enzymes may be monomers. Their optimum pH values ranged from 5.5 to 6.0, similar to other DFA I-forming IFTases or di-d-fructofuranose-1,2′:2,3′-dianhydride (DFA III)-forming IFTases. NoluIFTase, NospIFTase, and NobaIFTase exhibited maximal activities at 55 °C, 50 °C, and 45 °C and were stable at 70 °C (for 15 min), 70 °C (187 min), and 55 °C (239 min), respectively. Furthermore, by comparing with our previously reported DFA I-forming IFTase, namely CcIFTase, a probable mechanism for the formation of DFA I by the three new enzymes was speculated, and CcIFTase will be selected for future structural resolution to illustrate the catalytic mechanism of DFA I-forming IFTases toward inulin.  相似文献   

16.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

17.
Glucose isomerase is an important industrial enzyme that catalyzes the reversible isomerization of glucose to fructose. In this study, the effect of cobalt ions (Co2+) on the catalytic efficiency and thermostability of recombinant glucose isomerase from Thermobifida fusca was analyzed. The activity of glucose isomerase from engineered Escherichia coli supplemented with 1 mM Co2+ (C-GI) reached 41 U/ml, 2.1-fold higher than enzyme prepared from E. coli without additive (GI). The purified C-GI also exhibited an increased specific activity (23.8 U/mg compared to 12.1 U/mg for GI) and a greater thermostability (half-life of 17 h at 75 °C, 11.3-fold higher than GI (1.5 h)). The optimal temperature for C-GI shifted from 80 °C to 85 °C and demonstrated higher activity over pH 7.0–9.0. The kcat/Km value of C-GI (89.3 M?1 s?1) for the isomerization of glucose to fructose was nearly 1.75-fold higher than that of GI. In addition, the engineered cells were immobilized with the method of flocculation-cross linking. The immobilized cells supplemented with 1 mM Co2+ (C-IGI) had a better operational performance than cells without additives (IGI); at the end of 6 cycles, the conversion rate of C-IGI was still 43.1%, meeting the conversion rate requirement.  相似文献   

18.
The synthesis of oligo(ethylene glycol)-alkene substituted theophyllines in positions 7 and/or 8 is described. The binding activity at adenosine receptors of selected derivatives was studied. Compound 2 showed high affinity for human A2B receptor (Ki = 4.16 nM) with a selectivity KiA2A/KiA2B of 24.1, and a solubility in water of 1 mM. The alkenyl substituent in some of the theophylline derivatives allows for covalent attachment of them onto hydrogen-terminated silicon substrate surfaces via hydrosilylation. Alternatively, an azido group was incorporated to an oligo(ethylene glycol)theophylline derivative as an anchor for tethering the molecules on ethynyl presenting surfaces via click reaction.  相似文献   

19.
Direct interspecies electron transfer (DIET) has been typically proposed as mechanism of electron transfer among methanogenic populations in granules during anaerobic digestion where Geobacter species play a key role. Using anaerobic granules where Geobacteraceae members were not prevalent − representing only 0.3% of total bacteria −, tests incubated with two co-substrates showed that the rate of methanogenesis from formate and hydrogen diminished in the presence of a non-methanogenic co-substrate such as ethanol. This could indicate that biological DIET occurs and competes with hydrogen and formate during methanogenesis. Moreover, the addition of conductive microparticles, such as stainless steel and granular activated carbon, was found to increase methanogenic activity in disintegrated granules by 190 ± 18% and 175 ± 22% respectively as compared to disintegrated granules devoid of microparticles. The addition of non-conductive microparticles such as porcelain however decreased methanogenic activity by 65 ± 3% of the disrupted granules without microparticle activity. These results indicate that syntrophic bacteria from anaerobic sludge excluding Geobacter species can also carry out conductive mineral mediated DIET.  相似文献   

20.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号