首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dibenzothiophene (DBT) biodesulfurisation (BDS) route using a genetically modified organism, Pseudomonas putida CECT 5279, is studied. Tests of BDS with whole cells and with homogenized cells are carried out by taking samples of the cells during growth. The influence of the growth phases in the evolution of the intermediates of the 4S DBT desulfurising route is shown.Conversions of the five key compounds of the 4S route (DBT, DBTO, DBTO2, HBPS and HBP) are measured. DBT conversion values are maximal with cells obtained after 30 h of growth time. HBP conversion values do not coincide with DBT conversion values, the maximum HBP production is obtained with cells grown for 10 h. A greater intermediate DBTO and DBTO2 accumulation in broth is produced with cells obtained at 5 and 10 h of growth time. Nevertheless, the accumulation in broth of HBPS, another intermediate, is considerably lower than that observed with cells obtained at 23, 30 and 45 h of growth time.Also, the concentration of the reducing equivalents (NADH and FMNH2) and flavin-oxido-reductase activity inside the cells is measured. This showed that the concentration of the reducing equivalents and the activity of the HpaC enzyme in the P. putida cytoplasm do not limit BDS rate.The influence of 4S compound transport across cellular membrane is studied by comparison of results obtained by resting cell assays (whole cells) and with homogenized cells assays (disrupted cells). The results show that there is no accumulation of any compound inside the cells, and that the transport rate across the cellular membrane does not limit the overall biodesulfurisation rate.  相似文献   

2.
The putative Rhodococcus rrn promoter region was cloned from the benzothiophene desulfurizing Rhodococcus sp. strain T09, and the dibenzothiophene desulfurizing gene, dsz, was expressed under the control of the putative rrn promoter in the strain T09 using a Rhodococcus–E.coli shuttle vector. Strain T09 harboring the expression vector, pNT, could desulfurize dibenzothiophene in the presence of inorganic sulfate, methionine, or cysteine, while the Dsz phenotype was completely repressed in recombinant cells carrying the gene under the control of the native dsz promoter under the same conditions. Among the sulfur sources examined, no intermediates were detected and only the final desulfurized product, 2-hydroxy-biphenyl, was produced using ammonium sulfate as the sulfur source. Received: 4 December 2001 / Accepted: 7 January 2002  相似文献   

3.
Five isolates able to utilize dibenzothiophene (DBT) as a sole sulfur source and to convert it to 2-hydroxybiphenyl (HBP) with high rates were selected to investigate their potentialities as biocatalysts of a diesel oil biodesulfurization process. Conventional and chemotaxonomic analyses and 16S ribosomal DNA (rDNA) sequencing showed that these strains belonged to the Rhodococcus/Gordonia cluster. The desulfurizing activities of resting cells were compared under various conditions to evaluate their stability in both aqueous and organic media, their sensitivity to the presence of hexadecane and their sulfur substrate selectivity. In spite of their taxonomic similarity, the five strains exhibited different properties. This diversity was not confirmed by the analysis of the desulfurizing genes by amplification and sequencing of large fragments of dszA, dszB, dszC, and dszD genes which revealed that four of the five selected strains had a dsz genotype identical to those of the reference strain, Rhodococcus erythropolis IGTS8.  相似文献   

4.
Gasoline-contaminated soil from Isfahan, Iran was selected to isolate a bacterium capable of desulfurizing dibenzothiophene (DBT). The isolated strain was named R1 and identified as Rhodococcus erythropolis through biochemical tests as well as sequencing of 16S rRNA gene. This strain could efficiently produce 2-hydroxybiphenyl (HBP) from DBT via the 4S metabolic pathway. The highest HBP amount was produced at 2 mM DBT with addition of glucose (10 g l(-1)), ethanol (3 g l(-1)), glycerol (2 g l(-1)) or succinate (10 g l(-1)) as carbon sources at pH 7. Highest respiration and growth rates were observed by microplate titration on 0.1 mM HBP, and addition of 0.2 mM HBP to glucose (1 g l(-1)) and DBT (0.3 mM) could inhibite the respiration of the isolate. The isolated strain could grow up to 0.4 mM of HBP when it is used with mineral sulfur as sole sulfur source. To the best of our knowledge this is the first report on a microtiter assay for the production and utilization of HBP by Rhodococcus.  相似文献   

5.
Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy –3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support growth of bacteria at an expense of DBT. These combined results suggest that Chelatococcus sp. prefers sulfur-specific extended 4S pathway for deep-desulphurization which may have an advantage for its intended future application as a promising biodesulfurizing agent.  相似文献   

6.
A metabolic pathway for the biodesulfurization of model organosulfur compounds e.g., dibenzothiophene (DBT), is proposed. This pathway, defined as extended 4S pathway, incorporates the traditional 4S pathway with the methoxylation pathway from 2-hydroxybiphenyl (HBP) to 2-methoxybiphenyl (2-MBP). The formation of 2-MBP was confirmed by the gas chromatography–mass spectrometry (GC–MS) analysis. A similar pathway was also obtained in the desulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT), confirming the methoxylation reaction in the desulfurization process by the Mycobacterium sp. strain. Compared with 2-HBP, 2-MBP has much slighter inhibition effect on the cell growth and desulfurization activity. Thus, the methoxylation pathway from 2-HBP to 2-MBP would make less inhibitory effect on the microbe. The new pathway with 2-MBP as the end product may be an alternative for the further desulfuration of the fossil fuels.  相似文献   

7.
Expression of the desulfurization genes (dsz) in Mycobacterium sp. G3 is repressed by sulfate, which is the product of biodesulfurization. An expression clone, pSMTABC, was constructed by placing the dsz genes downstream of the hsp60 promoter and the constructed plasmid was electroporated into G3. The recombinant strain G3-1 desulfurized dibenzothiophene in the presence of 0.5 mM sulfate while the Dsz phenotype was completely repressed in the wild-type strain. However, there was no significant increase in the amount of desulfurization enzymes in G3-1. In addition, G3 had superior separation of diesel oil–water separation activity compared to E. coli, which is superior to desulfurizing rhodococci.  相似文献   

8.
Using cell-free extracts of a desulfurizing mesophile, Rhodococcus erythropolis KA2-5-1 (the Dsz system) and Escherichia coli JM109, which possesses the desulfurizing genes of a thermophile Paenibacillus sp. A11-2 (the Tds system), the reactivity of desulfurizing enzymes toward 4,6-dialkyl dibenzothiophenes (4,6-dialkyl DBTs) and 7-alkyl benzothiophenes (7-alkyl BTs) was investigated. Both systems desulfurized all the 4,6-dialkyl DBTs, except 4,6-dibutyl DBT. Although some alkylated BTs were degraded by the Dsz system, no desulfurized compounds were detected. The reactivity of the Tds system toward alkylated BTs was higher than that of DBT. In contrast to the Dsz system, the Tds system yielded desulfurized compounds from all of the alkylated BTs examined.  相似文献   

9.
Pseudomonas putida IFO13696, a recombinant strain with dsz desulfurization genes, desulfurized dibenzothiophene (DBT) in water but not in n-tetradecane. By introducing into this recombinant strain the hcuABC genes that take part in the uptake of DBT in the oil phase into the cell, 82% of 1 mM DBT in n-tetradecane was degraded in 24 h by resting cells. The products of hcuABC genes thus acted in the uptake of DBT in n-tetradecane into the cells and were effective in desulfurization of DBT in the hydrocarbon phase.  相似文献   

10.
11.
Biocatalytic desulfurization is still not a commercial technology, but conceptual engineering and sensitivity analyses have shown that the approach is very promising. The purpose of this paper is to investigate further some aspects of the biodesulphurization pathways, discussing the non-destructive pathway with the well-known Rhodococcus rhodochrous IGTS8. Findings revealed byproducts, such as 2′-hydroxybiphenyl (HBP), sulfite and sulfate, obtained by the desulfurization of dibenzothiophene (DBT), to exert an inhibiting effect. The results suggest that IGTS8 may follow two different metabolic pathways in stationary-growth-phase cells or under growing conditions. The first pathway is characterized by oxidative steps, which convert DBT to DBT sulfoxide and to DBT sulfone. The sulfone is transformed to 2-(2′-hydroxyphenyl)benzene sulfinate and then to HBP and sulfite by a sulfinic acid hydrolase. In the second pathway the sulfone is further oxidized to 2-(2′-hydroxyphenyl)benzene sulfonate and then to HBP and sulfate by a sulfonic acid hydrolase. Experiments using benzene sulfonic acid suggest that the sulfonic acid hydrolase is an induced enzyme. Received: 8 June 1998 / Received revision: 1 October 1998 / Accepted: 2 October 1998  相似文献   

12.
Ma T  Li G  Li J  Liang F  Liu R 《Biotechnology letters》2006,28(14):1095-1100
The desulfurization (dsz) genes from Rhodococcus erythropolis DS-3 were successfully integrated into the chromosomes of Bacillus subtilis ATCC 21332 and UV1 using an integration vector pDGSDN, yielding two recombinant strains, B. subtilis M29 and M28 in which the integrated dsz genes were expressed efficiently under the promoter, Pspac. The dibenzothiophene (DBT) desulfurization efficiency of M29 was 16.2 mg DBT l−1 h−1 at 36 h, significantly higher than that of R. erythropolis DS−3 and B. subtilis M28 and also showed no product inhibition. The interfacial tension of the supernatant fermented by M29 varied from 48 mN m−1 to 4.2 mN m−1, lower than that of the recombinant strain, M28, reveals that the biosurfactant secreted from M29 may have an important function in the DBT desulfurization process.  相似文献   

13.
Dibenzothiophene (DBT) degradation activity of recombinant Rhodococcus sp. T09/pRKPP was increased by about 3.5-fold by introduction of the NAD(P)H/FMN oxidoreductase gene (dszD), while DBT desulfurization activity remained the same with production of dibenzo[1,2]oxathiin-6-oxide, which was caused by insufficient activity of the last desulfurization step involving a desulfinase. Introduction of an additional dsz operon resulted in a 3.3-fold increase DBT desulfurization activity (31 mol g dry cell–1 h–1) compared with that of T09/pRKPP (9.5 mol g dry cell–1 h–1). Furthermore, optimization of DBT at 25 mg l–1 and glucose at 10 g l–1, increased the total DBT desulfurization activity 2- to 3-fold due to increases in the DBT desulfurizing specific activity and the final cell concentration.  相似文献   

14.
One possible alternative to current fuel hydrodesulfurization methods is the use of microorganisms to remove sulfur compounds. Biodesulfurization requires much milder processing conditions, gives higher specificity, and does not require molecular hydrogen. In the present work we have produced two compatible plasmids: pDSR3, which allows Escherichia coli to convert dibenzothiophene (DBT) to hydroxybiphenyl (HBP), and pDSR2, which produces a Vibrio harveyi flavin oxidoreductase. We show that the flavin oxidoreductase enhances the rate of DBT removal when co-expressed in vivo with the desulfurization enzymes. The plasmids pDSR2 and pDSR3 were co-expressed in growing cultures. The expression of oxidoreductase caused an increase in the rate of DBT removal but a decrease in the rate of HBP production. The maximum rate of DBT removal was 8 mg/h. g dry cell weight. Experiments were also conducted using resting cells with the addition of various carbon sources. It was found that the addition of glucose or glycerol to cultures with oxidoreductase expression produced the highest DBT removal rate (51 mg/h. g dry cell weight). The culture with acetate and no oxidoreductase expression had the highest level of HBP production. For all carbon sources, the DBT removal rate was faster and the HBP generation rate slower with the expression of the oxidoreductase. Analysis of desulfurization intermediates indicates that the last enzyme in the pathway may be limiting.  相似文献   

15.
The genetic organization of the DNA region encoding the phenol degradation pathway ofPseudomonas putida H has been investigated. This strain can utilize phenol or some of its methylated derivatives as its sole source of carbon and energy. The first step in this process is the conversion of phenol into catechol. Catechol is then further metabolized via themeta-cleavage pathway into TCA cycle intermediates. Genes encoding these enzymes are clustered on the plasmid pPGH1. A region of contiguous DNA spanning about 16 kb contains all of the genetic information necessary for inducible phenol degradation. The analysis of mutants generated by insertion of transposons and cassettes indicates that all of the catabolic genes are contained in a single operon. This codes for a multicomponent phenol hydroxylase andmeta-cleavage pathway enzymes. Catabolic genes are subject to positive control by the gene product(s) of a second locus.  相似文献   

16.
A linker-based approach for combinatorial assembly of promoter and gene cassettes into a biochemical pathway is developed. A synthetic library containing 144 combinations, with 3 promoters and 4 gene variants, was constructed for the ackA and pta genes of the acetate utilization pathway in E. coli. The in vitro isothermal assembled library was then introduced into E. coli mutant (acs-, pta-, ackA-) and selected for restoration of acetate utilization. 81% of the colonies screened contained the complete functional pathway. Thirty positive clones were analyzed and accounted for 10% of the 144 promoter?Cgene combinations.  相似文献   

17.
Metabolite sensing, a fundamental biological process, plays a key role in metabolic signaling circuit rewiring. Hexosamine biosynthetic pathway (HBP) is a glucose metabolic pathway essential for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which senses key nutrients and integrally maintains cellular homeostasis. UDP-GlcNAc dynamically regulates protein N-glycosylation and O-linked-N-acetylglucosamine modification (O-GlcNAcylation). Dysregulated HBP flux leads to abnormal protein glycosylation, and contributes to cancer development and progression by affecting protein function and cellular signaling. Furthermore, O-GlcNAcylation regulates cellular signaling pathways, and its alteration is linked to various cancer characteristics. Additionally, recent findings have suggested a close association between HBP stimulation and cancer stemness; an elevated HBP flux promotes cancer cell conversion to cancer stem cells and enhances chemotherapy resistance via downstream signal activation. In this review, we highlight the prominent roles of HBP in metabolic signaling and summarize the recent advances in HBP and its downstream signaling, relevant to cancer.  相似文献   

18.
  • 1.1. A pathway for a-methylnoradrenaline oxidation to α-methylnoradrenochrome, by tyrosinase, is proposed. Characterization of intermediates in this oxidative reaction and stoichiometry determination have both been performed.
  • 2.2. It has been possible to detect spectrophotometrically o-quinone-H+ as the first intermediate in this pathway after oxidizing α-methylnoradrenaline with mushroom tyrosinase or sodium periodate in a pH range from 5 to 6.
  • 3.3. The steps for α-methylnoradrenaline transformation into its aminochrome could be: α-methylnoradrenaline → o -α-methylnoradrenaline — H+oα -methylnoradrenalinequinone → leuko — α — methylnora — drenochrome→α-methylnoradrenochrome.
  • 4.4. No participation of oxygen was detected in the conversion of leuko-α-mehtylnoradrenochrome into α -methylnoradrenochrome.
  • 5.5. Matrix analysis of the spectra obtained with a rapid scan spetrophotometer verified that o-quinone-H+ was transformed into aminochrome in a constant ratio.
  • 6.6. The stoichiometry for this conversion followed the equation: 2 α-methylnoradrenalinequinone-H+α-methylnoradrenaline + α-methylnoradrenochrome.
  相似文献   

19.
二苯并噻吩(DBT)及其衍生物微生物脱硫的4S途径需要4个酶(DszA,DszB,DszC and DszD)参与催化。其中DBT单加氧酶(DszC or DBT-MO)和DBT-砜单加氧酶(DszA or DBTO2-MO)都是黄素依赖型氧化酶,它们的催化反应需要菌体中还原型的黄素单核苷酸(FMNH2),FMNH2由辅酶黄素还原酶(DszD)再生。因此,共表达DszA,DszB,DszC和DszD可以提高整个脱硫途径的速率。构建了两个不相容性表达载体pBADD和paN2并在大肠杆菌中实现了4个脱硫酶基因的共表达。DszA,DszB,DszC和DszD的可溶性蛋白表达量分别占菌体总蛋白质的7.6%,3.5%,3.1%和18%。共表达时的脱硫活性是单独用paN2表达时的5.4倍,并对工程菌休止细胞脱除模拟柴油中DBT的活性进行了研究。  相似文献   

20.
Enhancement of the desulfurization activities of Paenibacillus strains 32O-W and 32O-Y were investigated using dibenzothiophene (DBT) and DBT sulfone (DBTS) as sources of sulphur in growth experiments. Strains 32O-W, 32O-Y and their co-culture (32O-W plus 32O-Y), and Vitreoscilla hemoglobin (VHb) expressing recombinant strain 32O-Yvgb and its co-culture with strain 32O-W were grown at varying concentrations (0·1–2 mmol l−1) of DBT or DBTS for 96 h, and desulfurization measured by production of 2-hydroxybiphenyl (2-HBP) and disappearance of DBT or DBTS. Of the four cultures grown with DBT as sulphur source, the best growth occurred for the 32O-Yvgb plus 32O-W co-culture at 0·1 and 0·5 mmol l−1 DBT. Although the presence of vgb provided no consistent advantage regarding growth on DBTS, strain 32O-W, as predicted by previous work, was shown to contain a partial 4S desulfurization pathway allowing it to metabolize this 4S pathway intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号