首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In biomechanical modeling of the shoulder, it is important to know the orientation of each bone in the shoulder girdle when estimating the loads on each musculoskeletal element. However, because of the soft tissue overlying the bones, it is difficult to accurately derive the orientation of the clavicle and scapula using surface markers during dynamic movement. The purpose of this study is to develop two regression models which predict the orientation of the clavicle and the scapula. The first regression model uses humerus orientation and individual factors such as age, gender, and anthropometry data as the predictors. The second regression model includes only the humerus orientation as the predictor. Thirty-eight participants performed 118 static postures covering the volume of the right hand reach. The orientation of the thorax, clavicle, scapula and humerus were measured with a motion tracking system. Regression analysis was performed on the Euler angles decomposed from the orientation of each bone from 26 randomly selected participants. The regression models were then validated with the remaining 12 participants. The results indicate that for the first model, the r2 of the predicted orientation of the clavicle and the scapula ranged between 0.31 and 0.65, and the RMSE obtained from the validation dataset ranged from 6.92° to 10.39°. For the second model, the r2 ranged between 0.19 and 0.57, and the RMSE obtained from the validation dataset ranged from 6.62° and 11.13°. The derived regression-based shoulder rhythm could be useful in future biomechanical modeling of the shoulder.  相似文献   

2.
In order to analyze shoulder joint movements, the authors use a ZEBRIS CMS-HS ultrasound-based movement analysis system. In essence, the measurement involves the determination of the spatial position of the 16 anatomical points, which are specified on the basis of the coordinates of ultrasound-based triplets positioned on the upper limb, the scapula, and the thorax; their spatial position is measured in the course of motion. Kinematic characteristics of 74 shoulder joints of 50 healthy persons were identified during elevation in the plane of the scapula. Kinematic characteristics of motion were identified by scapulothoracic, glenohumeral, and humeral elevation angles; range of angles; scapulothoracis and glenohumeral rhythm; scapulothoracic, glenohumeral, and scapuloglenoid ratios; and the relative displacement between the rotation centers of the humerus and the scapula. Motion of the humerus and the scapula relative to each other was characterized by their rotation as well as the relative displacement between the rotation centers of scapula and humerus. The biomechanical model of the shoulder joint during elevation can be described by analyzing the results of the measurements performed.  相似文献   

3.
This paper presents some results on the modelling and the corresponding parameter estimation of the human shoulder. This system consists of the clavicle, the scapula, the humerus and the various joints between these bodies and the trunk through the sternum; it will be represented as a succession of a rotational joint between the sternum and the clavicle and a constant distance joint, representing the scapula between, the clavicle and the humerus head. The parameters of this system are the components of the position vectors of the joint characteristic points (the corresponding centres of the rotations). Experimental results are presented as well as a validation of the proposed model.  相似文献   

4.
In this paper the concept of a three-dimensional biomechanical model of the human shoulder is introduced. This model is used to analyze static load sharing between the muscles, the bones and the ligaments. The model consists of all shoulder structures, which means that different positions and different load situations may be analyzed using the same model. Solutions can be found for the complete range of shoulder motion. However, this article focuses only on elevation in the scapular plane and on forces in structures attached to the humerus. The intention is to expand the model in future studies to also involve the forces acting on the other shoulder bones: the scapula and the clavicle. The musculoskeletal forces in the shoulder complex are predicted utilizing the optimization technique with the sum of squared muscle stresses as an objective function. Numerical results predict that among the muscles crossing the glenohumeral joint parts of the deltoideus, the infraspinatus, the supraspinatus, the subscapularis, the pectoralis major, the coracobrachialis and the biceps are the muscles most activated during this sort of abduction. Muscle-force levels reached values of 150 N when the hand load was 1 kg. The results from the model seem to be qualitatively accurate, but it is concluded that in the future development of the model the direction of the contact force in the glenohumeral joint must be constrained.  相似文献   

5.
In this paper, we present an inverse kinematics method to determining human shoulder joint motion coupling relationship based on experimental data in the literature. This work focuses on transferring Euler-angle-based coupling equations into a relationship based on the Denavit–Hartenberg (DH) method. We use analytical inverse kinematics to achieve the transferring. For a specific posture, we can choose points on clavicle, scapula, and humerus and represent the end-effector positions based on Euler angles or DH method. For both Euler and DH systems, the end-effectors have the same Cartesian positions. Solving these equations related to end-effector positions yields DH joint angles for that posture. The new joint motion coupling relationship is obtained by polynomial and cosine fitting of the DH joint angles for all different postures.  相似文献   

6.
PurposeThe aim of the study was to compare the kinematic parameters and the on–off pattern of the muscles of patients with multidirectional instability (MDI) treated by physiotherapy or by capsular shift and postoperative physiotherapy before and after treatment during elevation in the scapular plane.ScopeThe study was carried out on 32 patients with MDI of the shoulder treated with physiotherapy, 19 patients with MDI of the shoulder treated by capsular shift and postoperative physiotherapy, and 25 healthy subjects. The motion of skeletal elements was modeled by the range of humeral elevation, scapulothoracic angle and glenohumeral angle, scapulothoracic (ST) and glenohumeral (GH) rhythms, and relative displacement between the rotation centers of the humerus and scapula. The muscle pattern was modeled by the on–off pattern of muscles around the shoulder, which summarizes the activity duration of the investigated muscles.ResultsThe different ST and GH rhythms and the increased relative displacement between the rotation centers of the scapula and the humerus were observed in MDI patients. The physiotherapy strengthened the rotator cuff, biceps brachii, triceps brachii, deltoid muscles, and increase the neuromuscular control of the shoulder joints. Capsular shift and physiotherapy enabled bilinear ST and GH rhythms and the normal relative displacement between the rotation centers of the scapula and humerus to be restored. After surgery and physiotherapy, the duration of muscular activity was almost normal.ConclusionThe significant alteration in shoulder kinematics observed in MDI patients cannot be restored by physiotherapy only. After the capsular shift and postoperative physiotherapy angulation at 60° of ST and GH rhythms, the relative displacement between the rotation centers of the scapula and humerus and the duration of muscular activity were restored.  相似文献   

7.
Homo floresiensis and the evolution of the hominin shoulder   总被引:1,自引:1,他引:0  
The holotype of Homo floresiensis, diminutive hominins with tiny brains living until 12,000 years ago on the island of Flores, is a partial skeleton (LB1) that includes a partial clavicle (LB1/5) and a nearly complete right humerus (LB1/50). Although the humerus appears fairly modern in most regards, it is remarkable in displaying only 110 degrees of humeral torsion, well below modern human average values. Assuming a modern human shoulder configuration, such a low degree of humeral torsion would result in a lateral set to the elbow. Such an elbow joint would function more nearly in a frontal than in a sagittal plane, and this is certainly not what anyone would have predicted for a tool-making Pleistocene hominin. We argue that Homo floresiensis probably did not have a modern human shoulder configuration: the clavicle was relatively short, and we suggest that the scapula was more protracted, resulting in a glenoid fossa that faced anteriorly rather than laterally. A posteriorly directed humeral head was therefore appropriate for maintaining a normally functioning elbow joint. Similar morphology in the Homo erectus Nariokotome boy (KNM-WT 15000) suggests that this shoulder configuration may represent a transitional stage in pectoral girdle evolution in the human lineage.  相似文献   

8.
For individualization of a biomechanical model, it is necessary to estimate the muscle attachments of the person to whom it is to be adapted. One of the methods to estimate muscle attachments is to use model transformations to transform a model with known muscle attachments to the bones of a person. We hypothesize that the location and shape of muscle attachment sites correlate with the shape of the bones they are attached to. If this hypothesis holds, it is possible to predict the location of muscle attachments when the shape of the bones is known. To validate this hypothesis, geometric models of three sets of shoulder bones were built. These models consist of 3-D surface models of the scapula, clavicle, and humerus, with the muscle attachment contours connected to them. By means of geometric transformations, the models were transformed, so the muscle attachments of the different data sets could be compared. Using these techniques, 50 per cent of the muscle attachment contours could be predicted with high accuracy. The muscle attachment contours that could not be predicted were all influenced by measurement errors. For 30 per cent of the muscle attachment contours, it was not possible to distinguish the interindividual differences from the inaccuracies of the method used. From this study, we concluded that most muscle attachment contours can be predicted by means of geometric models of the bones.  相似文献   

9.
10.
This article describes the growth of the anuran pectoral girdle of Rana pipiens and compares skeletal development of the shoulder to that of long bones. The pectoral girdle chondrifies as two halves, each adjacent to a developing humerus. In each, the scapula and coracoid form as single foci of condensed chondrocytes that fuse, creating a cartilaginous glenoid bridge articulating with the humerus. Based on histological sections, both the dermal clavicle and cleithrum begin to ossify at approximately the same time as the periosteum forms around the endochondral bones. The dermal and endochondral bones of the girdle form immobile joints with neighboring girdle elements; however, the cellular organization and growth pattern of the scapula and coracoid closely resemble those of a long bone. Similar to a long bone epiphysis, distal margins of both endochondral elements have zones of hyaline, stratified, and hypertrophic cartilages. As a result, fused elements of the girdle can grow without altering the glenoid articulation with the humerus. Comparisons of anuran long bone and pectoral girdle growth suggest that different bones can have similar histology and development regardless of adult morphology.  相似文献   

11.
Scapular position affects shoulder mobility, which plays an important role in the upper limb adaptations in primates. However, currently available data on scapular position are unsatisfactory because of the failure to simultaneously consider the relative dimensions of all the three skeletal elements of the shoulder girdle, i.e. the clavicle, the scapula and the thorax. In the present study, the clavicular length and the scapular spine length were measured on preserved cadavers, and the dorsoventral thoracic diameter was measured on scaled radiographs of a wide range of primates, permitting a quantitative comparison of scapular position among primates. It was found that arboreal monkeys have a more dorsally situated scapula than terrestrial ones, but the same difference was not found between terrestrial and arboreal prosimians. Hominoids were found to have the most dorsally situated scapula. Contrary to the slow climbing theory of hominoid evolution, which tries to explain most postcranial specializations of hominoids as adaptations for slow climbing, the scapulae of slow-climbing lorines and Alouatta are much less dorsal than those of the hominoids.  相似文献   

12.
BACKGROUND. To describe 3D shoulder joint movements, the International Society of Biomechanics (ISB) recommends using segment coordinate systems (SCSs) on the humerus, scapula and thorax, and joint coordinate systems (JCSs) on the shoulder. However, one of the remaining problems is how to define the zero angles when the arm is in an initial reference position. The aim of this paper is to compare various methods of determining the JCSs of the shoulder that make it possible to define the zero angles of the arm in the resting position. METHODS. Able-bodied subjects performed elevation movements in the scapular plane, specifically neutral, internal and external rotations of the humerus. The initial humerus position (at the beginning of the arm movement) and range of motion were analysed for the purpose of clinical interpretation of arm attitude and movement. The following four different JCSs were explored: (1) the standard JCS, defined as recommended by the ISB, (2) a first aligned JCS, where the humerus SCS is initially aligned with the scapula SCS, (3) a second aligned JCS, where the opposite operation is performed and 4) a third aligned JCS, where both the humerus and the scapular SCS are initially aligned with the thorax SCS. FINDINGS. The second aligned JCS was the only method that did not produce any exaggerated range of movement in either anatomical plane. INTERPRETATION. Mathematical JCS alignment allows clearer clinical interpretation of arm attitude and movement.  相似文献   

13.
The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle-sternoclavicular joint, acromioclavicular joint, and glenohumeral joint-were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.  相似文献   

14.
在懒猴与其它灵长类肩关节局部解剖的基础上,对肩关节有关指数的多变量分析结果表明,与骨骼相比,肩关节肌的种间差别明显较大。肩胛盂宽指数、肩胛骨指数和锁肱指数对种的区分有重要意义。懒猴具有类似于叶猴三角肌、大圆肌和喙肱中肌较远的止点及发达的背阔肌和斜方肌颅侧部,增强了肩关节的运动,表现出适应树栖四足运动的特征。而懒猴粗壮的肱骨、较长的锁骨和较长的肱骨,是攀爬型和四足倒挂运动的适应结果。  相似文献   

15.
Background. To describe 3D shoulder joint movements, the International Society of Biomechanics (ISB) recommends using segment coordinate systems (SCSs) on the humerus, scapula and thorax, and joint coordinate systems (JCSs) on the shoulder. However, one of the remaining problems is how to define the zero angles when the arm is in an initial reference position. The aim of this paper is to compare various methods of determining the JCSs of the shoulder that make it possible to define the zero angles of the arm in the resting position.

Methods. Able-bodied subjects performed elevation movements in the scapular plane, specifically neutral, internal and external rotations of the humerus. The initial humerus position (at the beginning of the arm movement) and range of motion were analysed for the purpose of clinical interpretation of arm attitude and movement. The following four different JCSs were explored: (1) the standard JCS, defined as recommended by the ISB, (2) a first aligned JCS, where the humerus SCS is initially aligned with the scapula SCS, (3) a second aligned JCS, where the opposite operation is performed and 4) a third aligned JCS, where both the humerus and the scapular SCS are initially aligned with the thorax SCS.

Findings. The second aligned JCS was the only method that did not produce any exaggerated range of movement in either anatomical plane.

Interpretation. Mathematical JCS alignment allows clearer clinical interpretation of arm attitude and movement.  相似文献   

16.
Shoulder motion is complex and significant research efforts have focused on measuring glenohumeral joint motion. Unfortunately, conventional motion measurement techniques are unable to measure glenohumeral joint kinematics during dynamic shoulder motion to clinically significant levels of accuracy. The purpose of this study was to validate the accuracy of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. We have developed a model-based tracking technique for accurately measuring in vivo joint motion from biplane radiographic images that tracks the position of bones based on their three-dimensional shape and texture. To validate this technique, we implanted tantalum beads into the humerus and scapula of both shoulders from three cadaver specimens and then recorded biplane radiographic images of the shoulder while manually moving each specimen's arm. The position of the humerus and scapula were measured using the model-based tracking system and with a previously validated dynamic radiostereometric analysis (RSA) technique. Accuracy was reported in terms of measurement bias, measurement precision, and overall dynamic accuracy by comparing the model-based tracking results to the dynamic RSA results. The model-based tracking technique produced results that were in excellent agreement with the RSA technique. Measurement bias ranged from -0.126 to 0.199 mm for the scapula and ranged from -0.022 to 0.079 mm for the humerus. Dynamic measurement precision was better than 0.130 mm for the scapula and 0.095 mm for the humerus. Overall dynamic accuracy indicated that rms errors in any one direction were less than 0.385 mm for the scapula and less than 0.374 mm for the humerus. These errors correspond to rotational inaccuracies of approximately 0.25 deg for the scapula and 0.47 deg for the humerus. This new model-based tracking approach represents a non-invasive technique for accurately measuring dynamic glenohumeral joint motion under in vivo conditions. The model-based technique achieves accuracy levels that far surpass all previously reported non-invasive techniques for measuring in vivo glenohumeral joint motion. This technique is supported by a rigorous validation study that provides a realistic simulation of in vivo conditions and we fully expect to achieve these levels of accuracy with in vivo human testing. Future research will use this technique to analyze shoulder motion under a variety of testing conditions and to investigate the effects of conservative and surgical treatment of rotator cuff tears on dynamic joint stability.  相似文献   

17.
In 3D image-based studies of joint kinematics, 3D registration methods should be automatic, insensitive to segmentation inconsistencies and use coordinate systems that have clinically relevant orientations and locations because this is important for analyzing rotation angles and translation directions. We developed and evaluated a registration method, which is based on the cylindrical geometry of the humerus shaft and an analysis of the inertia moments of the humerus head, in order to consistently and automatically orient the humerus coordinate system according to its anatomy. Registration techniques must be thoroughly evaluated. In this study we used a well-detectable marker as reference, from which coordinate system determination errors of a 3D object could be measured. This allowed us to quantify by means of unique error analysis the translational and rotational errors in terms of how much and about/along which humeral axis errors occurred. The evaluation experiments were performed using virtual rotations of 3D humeral binary image, a humerus model and a 3D image of a volunteer's shoulder. They indicated that the humeral coordinate system determination errors primarily originated from segmentation inconsistencies, which influenced mostly the humeral transverse axes orientation. The error analysis revealed that the developed registration method reduced the effect of manual segmentation inconsistencies on the orientation of the humeral transverse axes up to 37%, in comparison to the commonly used inertia registration.  相似文献   

18.
This paper presents a novel method to explore the intrinsic morphological correlation between the bones of a shoulder joint (humerus and scapula). To model this correlation, canonical correlation analysis (CCA) is used. We also propose a technique to predict a three-dimensional (3D) bone shape from its adjoining segment at a joint based on partial least squares regression (PLS). The high dimensional 3D surface information of a bone is represented by a few variables using principal component analysis, which also captures the pattern of variability of the shapes in our datasets. Our results show that the humerus set and scapula set have highly linear morphological relationship and that the correlation information can be used as a classifier. In this study, primate shoulder bone datasets were categorised into two clusters: great apes (including humans) and monkeys. A leave one out experiment was performed to test the robustness of this prediction method. The prediction behaviour using this method shows statistically significantly better results than using the mean shape from the training set.  相似文献   

19.
作者对近年在华南地区收集的70具成年男性完整骸骨的颅围、锁骨最大长、肩胛骨形态宽及髋骨最大长进行了测量。相关分析表明,各测量项目与身高的相关系数均有非常显著的意义(p<0.01)。进而建立了相应的回归方程。用70例已知生前身高的国人骸骨对这些回归方程进行了检验。结果表明,本文所建立的这些回归方程均有一定的实用价值。  相似文献   

20.
Soft tissue artifact (STA) is the main source of error in kinematic estimation of human movements based on skin markers. Our objective was to determine the components of marker displacements that best describe STA of the shoulder and arm (i.e. clavicle, scapula and humerus). Four participants performed arm flexion and rotation, a daily-life and a sports movement. Three pins with reflective markers were inserted into the clavicle, scapula and humerus. In addition, up to seven skin markers were stuck on each segment. STA was described with a modal approach: individual marker displacements or marker-cluster (i.e. translations, rotations, homotheties and stretches) relative to the local segment coordinate system defined by markers secured to the pins. The modes were then ranked according to the percentage of total STA energy that they explained. Both individual skin marker displacements and marker-cluster geometrical transformations were task-, location-, segment- and subject-specific. However, 85% of the total STA energy was systematically explained by the rigid transformations (i.e. translations and rotations of the marker-cluster). In conclusion, large joint dislocations and limited efficiency of least squares bone pose estimators are expected for the computation of upper limb joint kinematics from skin markers. Future developments shall consider the rigid transformations of marker-clusters in the implementation of an STA model to reduce its effects on kinematics estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号