首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dendrochronologia》2014,32(1):32-38
Multi species tree-ring chronologies of the western Himalaya revealed strong significant negative relationship with potential evapotranspiration (PET) and vapor pressure (VP), and positive with moisture index (MI) and Palmer Drought Severity Index (PDSI) during spring season (March to May). The preliminary study showed that the MI and PDSI particularly in spring season might have a large scale positive association in developing of annual ring-width patterns, whereas PET and VP during the season are found not to be conducive for the trees growth. PET and VP from the beginning of the year 1917 showed strong influence on tree growth. High and low PET/VP might be associated with low and high MI/PDSI of the region. Extremely narrow ring width indices were observed in the year of 1921, 1941, 1953, 1954 and 1985 at most of the tree sites which are under the severe moisture stress condition due to extremely high PET and VP of the region. Also, extremely low PET and VP were found during 1917, 1933 and 1982, reflecting ring-width index above the normal due to enough moisture supply. Thus, the released and suppressed tree growth over the region is probably linked with the high and low MI/PDSI of the region. Loss or accumulation of soil moisture of the region might be precondition before the starting of growing season of the trees. The recent observation also suggests a weakening of VP and PET's influence on tree growth during recent few decades as compared to early period in sliding 31-years windows over western Himalaya. Correlation analysis of PET with MI and VP as well as PDSI for the period 1902–2002 during spring season indicated statistically strong correlation (r = −0.53, 0.82, −0.50) respectively which is highly significant at 0.01% level.  相似文献   

2.
Knowledge of tree growth/climate response relationships is important to dendroecological studies and dendroclimatic reconstructions, particularly in the Southeastern Coastal Plain where few such studies have been attempted. To this end, we developed tree-ring chronologies of total ring width, earlywood width, and latewood width from longleaf pine (Pinus palustris Mill.) at three sites in the Southeastern Coastal Plain to examine the climate–growth relationships for this tree species. The length of these chronologies is unprecedented for southern pine chronologies in the Southeast. We compared the tree-ring chronologies to monthly temperature, precipitation, Palmer drought severity index (PDSI), and Palmer hydrological drought index (PHDI) data from the pertinent climate divisions. We found that PDSI and PHDI have the highest correlation with longleaf pine growth, and the strongest relationships between longleaf pine growth and these variables occur between July and November. Precipitation in the spring and summer was also positively related to growth at all sites. The relationship between temperature and growth was the weakest among all climate variables, but warm summer temperatures had a consistent, negative relationship with longleaf pine growth. The climate signal in the latewood was generally more robust than for total ring width and earlywood width.  相似文献   

3.
利用采集自青藏高原东南地区察隅县低海拔河谷澜沧黄杉建立树轮宽度差值年表。将树轮宽度差值年表与气候因子进行皮尔逊相关分析,利用线性回归方法重建了青藏高原东南地区1812—2016年4—5月帕尔默干旱指数(PDSI)变化(方差解释量为47%)。结果表明: 树轮宽度指数与PDSI指数有良好相关性(r=0.69,P<0.01)。PDSI重建序列存在4个偏湿阶段(1831—1844年、1853—1863年、1938—1948年和1988—2002年)、3个偏干阶段(1864—1876年、1908—1926年和2003—2016年)。与其他序列和历史记录对比分析表明,该重建序列能够较好地指示研究区历史时期干湿变化。空间分析显示,重建序列与青藏高原东南地区 PDSI 指数的变化趋势较为一致,具有很强的空间代表性。多窗谱分析表明,PDSI重建序列具有19~20、3.9、3.2、2.4和2.1年准周期变化特征,这些周期性干湿变化与亚洲夏季风和ENSO活动相关。  相似文献   

4.
《Dendrochronologia》2014,32(2):97-106
The relationship of streamflow records of the Lachen River with tree-ring parameters of total tree-ring width (TRW), earlywood width (EWW) and latewood width (LWW) chronologies of Larix griffithiana from Lachen, North Sikkim, Eastern Himalaya was generated. These chronologies correlate significantly with the observed discharge of the Lachen River where the EWW chronology explains 61.2% of the streamflow variance. Based on this result, Lachen River discharge for the period of previous year March to current year February was reconstructed using EWW chronology, which extends back to AD 1790. In the smoothed reconstructed data the period of extreme low streamflows were during AD 1791–1805, 1813–1822 and 1914–1925 and the extreme highs were during AD 1823–1835, 1879–1890, 1926–1946 and 1980–1989. The streamflow is also found to be lower than average during the monsoon failure (or East India Drought) of AD 1792–1796 and past great droughts of AD 1876–1878. The lower tree growth during AD 1816–1822 is consistent with that of the Tambora volcanic eruption of Indonesia in AD 1815. High spectral power at 4–8 years in the reconstructed streamflow is similar to that of ENSO range.  相似文献   

5.
基于祁连山树轮宽度指数的区域NDVI重建   总被引:2,自引:0,他引:2       下载免费PDF全文
利用祁连山自东向西5条树轮宽度年表序列和1986-2003年间的归一化植被指数(NDVI), 分析了NDVI的时空变化及其与树轮宽度年表之间的关联。结果表明, 祁连山地区植被的生长主要集中在6-8月。空间上, NDVI值从祁连山东段向西段逐渐减小; 在1986-2003时段内, 东、中和西段生长季的NDVI值分别增长了3.28%、4.82%和7.75%。整个祁连山地区的NDVI变化与5个宽度年表的第一主成分相关性较高(r = 0.74, p < 0.01)。基于此, 利用树轮宽度RES年表的第一主成分重建了1843-2003年间祁连山地区生长季的NDVI变化曲线。重建的NDVI曲线表现出6个高值期和6个低值期, 其中1923-1932的10年间植被生长状况最差。另外, 在1989-2003时段内NDVI年际波动较大, 总体上表现为NDVI低于平均值, 但是从1991年开始, NDVI有上升的趋势。  相似文献   

6.
The unavailability of weather records from the orography dominated high Himalayas restricts our understanding in long term perspective. However, remote high-altitude regions of Himalaya silently testify the regional climate and can provide valuable insights of real climatic challenges in the absence of instrumental observatories. The tree-species over such high-altitude regions with negligible anthropogenic pressure have the potential to reveal the clear climate upheavals in long-term perspective. In the present study tree-ring samples of Himalayan birch from a high-altitude cold-arid region of Lahaul-Spiti, Himachal Pradesh were analysed and two ring-width chronologies were developed. The response function analyses showed direct relationship between the summer temperature and ring-width chronologies of Himalayan birch. Using the relationship we have reconstructed mean summer temperature (June-July) back to AD 1752 for the Lahaul-Spiti region of Himachal Pradesh. We have developed the first record of summer temperature from the Indian western Himalaya using tree-ring-width chronologies that have direct relationship with summer temperature. Further, our study in accordance with instrumental as well as other tree-ring based summer temperature records suggested that the high-altitude western Himalaya is not warming unprecedently during summers. However, slight warming pattern have been observed in the summer temperature in the later part of the reconstruction. The temperature reconstruction also reflects strong spatial correlation with gridded temperature for the western Himalaya.  相似文献   

7.
Two new Juniper tree-ring-width (TRW) chronologies spanning more than 500 years were developed in the Yellow River source area, North Eastern Qinghai-Tibetan Plateau (NE-QTP). For the two studied sites, located approximately 50 km apart, split correlation and coherence analysis reveal unstable tree-growth responses to local moisture availability. While significant correlations are obtained with April–June local precipitation, Palmer Drought Severity Index (PDSI) and river flow from 1948/1954 to 1998 and from 1948/1954 to 1970s, these correlations vanish for the time period 1970s-1998. The local instrumental climate data (precipitation, PDSI and river flow) exhibit opposite correlations with large scale modes of variability (El Niño Southern Oscillation, ENSO, and Pacific Decadal Oscillation, PDO) before and after the 1977 PDO shift. One tree-ring chronology is coherent and anti-phased with instrumental ENSO/PDO indices at 5.2-year frequency. On the longer time span, this TRW chronology is compared with PDO reconstructed from historical Chinese data. This comparison also exhibits unstable multi-decadal relationships, notably in the mid 19th century. Altogether, the comparison between our two chronologies, local instrumental climate records, and ENSO/PDO indices suggest a cautious use of local TRW records for paleoclimate reconstructions. Further studies are needed to explore both the spatial coherency of tree-ring records and the temporal stability of their response to local and large scale climate variability.  相似文献   

8.
Aims Drought affected by atmosphere–ocean cycle is a dominant factor influencing tree radial growth of sandy Mongolian pine (Pinus sylvestris var. mongolica) and regional vegetation dynamics in Hulunbuir, China. However, historical droughts and its correlations with tree radial growth and atmosphere–ocean cycle in this area have been little tested. Methods We developed tree-ring chronologies of Mongolian pine from Hulunbuir, Inner Mongolia, China and analyzed the correlations between tree-ring width index, the normalized difference vegetation index and Palmer drought severity index (PDSI), then developed a linear model to reconstruct the drought variability from 1829 to 2009. Long-term trends and its linkages with atmosphere–ocean cycle were performed by the power spectral, wavelet and teleconnection analysis.Important findings The local moisture variations affected largely the regional vegetation dynamics and tree-ring growth of Mongolia pine in the forest–grassland transition. Using tree-ring width chronology of Mongolian pine, the reconstruction explains 49.2% of PDSI variance during their common data period (1951–2005). The reconstruction gives a broad-scale regional representation of PDSI in the Hulunbuir area, with drought occurrences in the 1850s, 1900s, 1920s, mid-1930s and at the turn of the 21st century. Comparisons with other tree-ring drought reconstructions and historical records reveal some common drought periods and drying trends in recent decades at the northern margin zones of the East Asian summer monsoon (EASM). The drying trends in these zones occurred earlier than weakening of the EASM. A REDFIT spectral analysis shows significant peaks at 7.2, 3.9, 2.7–2.8, 2.4 and 2.2 years with a 0.05 significance level, and 36.9, 18.1 and 5.0 years with 0.1 significance level. Wavelet analysis also shows similar cycles. Drought variations in the study area significantly correlated with sea surface temperatures in the western tropical Pacific Ocean and middle and northern Indian Ocean, and the Pacific Decadal Oscillation and North Atlantic Oscillation. This suggests a possible linkage with the El Ni?o-Southern Oscillation, the EASM and the Westerlies.  相似文献   

9.
北亚热带马尾松年轮宽度与NDVI的关系   总被引:2,自引:0,他引:2  
北亚热带地处暖温带向亚热带的过渡地区,对环境变化较为敏感。因此,研究北亚热带马尾松年轮宽度与森林NDVI的关系对于揭示陆地生态系统对全球气候变化的响应具有重要意义。以马尾松自然分布北界的南郑县和河南省鸡公山自然保护区为研究地点,利用北亚热带马尾松年轮宽度指数和1982-2006年逐月NOAA/AVHRR的归一化植被指数(NDVI)数据及气候数据,在分析年轮宽度及NDVI与气候因子关系的基础上,重点讨论了北亚热带马尾松径向生长与NDVI之间的关系。结果表明:北亚热带NDVI受水热条件的共同控制,其中与月均温相关性较强,且以正相关为主,与月降水量和干旱度指数多负相关;马尾松的径向生长与上一生长季的温度呈正相关,降水和干旱度指数为负相关,当年生长季内的温度和降水以促进作用为主,而与干旱度指数的关系在两地区内相反;南郑县和鸡公山地区年轮宽度与NDVI年值之间关系均不显著(P>0.05)。单月来讲,南郑县3、4、12月NDVI值与年表显著相关,鸡公山地区9月份的NDVI值与差值年表RES相关性最大;南郑县树木生长受温度影响最大,而鸡公山地区受温度和降水的综合作用。因此,在北亚热带地区,长时间序列的年轮宽度数据并不能很好反应NDVI的长期变化,利用树轮宽度指数来重建北亚热带地区NDVI需要进一步研究。  相似文献   

10.
Individual tree-ring width chronologies and mean chronologies from Pinus tabuliformis Carr. (Chinese pine) and Sabina przewalskii Kom. (Qilian juniper) tree cores were collected and analyzed from two sites in the eastern Qilian Mountains of China. The chronologies were used to analyze individual and time-varying tree-ring growth to climate sensitivity with monthly mean air temperature and total precipitation data for the period 1958–2008. Climate–growth relationships were assessed with correlation functions and their stationarity and consistency over time were measured using moving correlation analysis. Individuals’ growth–climate correlations suggested increased percentages of individuals are correlated with certain variables (e.g., current June temperature at the P. tabuliformis site; previous June, December and current May temperature and May precipitation at the S. przewalskii site). These same climatic variables also correspond to the mean chronology correlations. A decreased percentage of individuals correlated with these climatic variables indicates a reduced sensitivity of the mean chronology. Moving correlation analysis indicated a significant change over time in the sensitivity of trees to climatic variability. Our results suggested: (1) that individual tree analysis might be a worthwhile tool to improve the quality and reliability of the climate signal from tree-ring series for dendroclimatology research; and (2) time-dependent fluctuations of climate growth relationships should be taken into account when assessing the quality and reliability of reconstructed climate signals.  相似文献   

11.
韦景树  李宗善  焦磊  陈维梁  伍星  王晓春  王帅 《生态学报》2018,38(22):8040-8050
为揭示黄土高原人工和自然物种径向生长对气候变化的响应差异,在延安羊圈沟小流域分别获取人工和自然物种的树木年轮材料并构建标准年表,其中人工物种为刺槐(Robinia pseudoacacia)和柠条(Caragana korshinskii),自然物种为山杏(Armeniaca sibirica)和荆条(Vitex negundo var.heterophylla),并对年表中的气候信号进行了统计分析。结果表明:1)人工物种年表中的气候信号较强,主要表现在5—8月份,与温度呈负相关关系(刺槐:r=-0.427—-0.511,P0.05;柠条:r=-0.227—-0.738,P0.05),与降雨则呈正相关关系,但相关系数未达到显著性水平;自然物种年表中的气候信号较弱,与温度和降雨的相关关系均较低;2)不同于自然物种,人工物种树轮年表还与去年夏季(7—9月份)温度(负相关)和降水(正相关)存在相关关系,表明人工物种树木生长对气候因子存在一定滞后性;3)人工物种树轮年表与PDSI干旱指数在各月份均维持正相关关系,在生长季(刺槐4—9月、柠条4—8月)达到显著水平(刺槐:r=0.481—0.704,P0.05;柠条:r=0.314—0.610,P0.05);而自然物种年表与PDSI干旱指数的相关关系较弱,均未达到相关性水平。从各年表与气候要素(温度、降雨、PDSI)响应强度来看,黄土高原人工物种树木生长受水分胁迫显著,且以刺槐最为明显,其次是柠条;自然物种树木生长则没有明显干旱胁迫的影响,仅山杏生长受一定水分胁迫影响,荆条生长则与各气候要素关系较弱,水分胁迫对其生长的影响已很小。本研究的结果表明黄土高原人工物种生长明显受到水分条件限制,而自然恢复物种生长则受水分条件影响较小,能适应黄土高原干旱半干旱气候条件。  相似文献   

12.
Tree-rings of Pinus kesiya from southern region of Manipur, Northeast India were used to develop chronologies of multiple tree-ring parameters that are: total-ring width (TRW), earlywood width (EW), latewood width (LW) and adjusted latewood (LWadj). The time span of these chronologies is 39 years (1980–2018 C.E.) and we compared their growth responses with monthly and daily climatic records. The comparison revealed a broadly consistent pattern of climate sensitivity with daily climate exhibiting higher correlation. The climate signals during pre-monsoon (March–May) were recorded in TRW and EW, whereas late-monsoon to post-monsoon climate signals were recorded in LW and LWadj. The spatial correlation analysis of tree-ring parameters and global sea surface temperature (SST) showed a positive relationship between tree growth with tropical Pacific Ocean and Indian Ocean during winter (December–February) and pre-monsoon (March–May) seasons. The LW and LWadj were also correlated with peak summer monsoon (July–August) SST over the tropical Pacific Ocean. IADFs observed in EW (E-IADF) were caused by dry and warm conditions during March–April. IADFs in LW (L-IADF) occurred due to a combination of enhanced rainfall and temperature during post-monsoon (October–November) season. Evidence of stand-specific micro-climatic conditions in the formation IADFs in this species was also found. This study showed that multiple parameters of P. kesiya provides a lucid understanding of climate response on its growth and can be considered as a proxy for studying sub-seasonal changes in past environmental conditions in longer records.  相似文献   

13.
呼伦贝尔沙地樟子松年轮生长对气候变化的响应   总被引:2,自引:0,他引:2  
以内蒙古呼伦贝尔地区沙地樟子松为样本,建立了樟子松树木年轮宽度年表,应用相关分析和响应函数分析等年轮气候学方法,研究了樟子松径向生长对气候变化的响应。结果表明,樟子松年轮宽度与4月和6—9月平均温度呈显著负相关关系(P<0.05);与各月降水量多呈正相关关系,特别是与当年5—8月的月降水量呈显著正相关关系(P<0.05);树轮年表与前一年10月至当年10月的PDSI均呈显著正相关关系(P<0.05),其中与5月份PDSI的相关性最高。响应函数分析表明,年表与当年6—7月的平均气温、上一年10月和当年5—7月份的降雨存在显著的相关性,与5—7月份PDSI存在较显著的正相关性;综合来看,呼伦贝尔沙地樟子松生长同时受降水和温度的影响,其径向生长与气候因子间的关系属于降水敏感型,为区域降水重建提供了科学基础。  相似文献   

14.
相较天然林,人工林生态系统对全球性气候变化更敏感。本文利用树木年代学方法,以东北半干旱地区油松人工林为对象建立油松年轮宽度年表,研究油松生长的动态变化及其径向生长与气象因子的相关关系,探讨升温对油松生长及分布的影响。结果表明: 研究区油松年轮宽度主要与生长季5—7月的平均温度呈显著负相关,与生长季早期4月和生长季5—7月的平均降水量和PDSI呈显著正相关,水分可利用性是限制研究区油松径向生长的主要因子。自西南向东北随着年降水量增加,各样点油松径向生长对年均温的敏感性增强,与年降水量的相关关系由显著正相关转变为负相关,说明偏干旱的西南部地区油松生长受水分限制更严重。气候变暖导致的干旱胁迫使得研究区西南部的部分人工林油松生长呈衰退状态。随着暖干化的持续,研究区油松分布边界将发生局地收缩,适宜生长的边界将向北移动。  相似文献   

15.
Tree-ring analyses from semi-arid to arid regions in western Himalaya show immense potential for developing millennia long climate records. Millennium and longer ring-width chronologies of Himalayan pencil juniper (Juniperus polycarpos), Himalayan pencil cedar (Cedrus deodara) and Chilgoza pine (Pinus gerardiana) have been developed from different sites in western Himalaya. Studies conducted so far on various conifer species indicate strong precipitation signatures in ring-width measurement series. The paucity of weather records from stations close to tree-ring sampling sites poses difficulty in calibrating tree-ring data against climate data especially precipitation for its strong spatial variability in mountain regions. However, for the existence of strong coherence in temperature, even in data from distant stations, more robust temperature reconstructions representing regional and hemispheric signatures have been developed. Tree-ring records from the region indicate multi-century warm and cool anomalies consistent with the Medieval Warm Period and Little Ice Age anomalies. Significant relationships noted between mean premonsoon temperature over the western Himalaya and ENSO features endorse utility of climate records from western Himalayan region in understanding long-term climate variability and attribution of anthropogenic impact.  相似文献   

16.
In the context of global warming, it is of high importance to assess the influence of climatic change and geographic factors on the radial growth of high-elevation trees. Using tree-ring data collected from four stands of Qilian juniper (Juniperus przewalskii Kom.) across an altitudinal gradient in the central Qilian Mountains, northwest China, we compared the radial growth characteristics and climate–growth relationships at different elevations. Results indicated that there was little difference in the tree-ring parameters of the four chronologies. Correlation analyses both for unfiltered and 10-year high-passed data of monthly climatic variables and chronologies were presented to investigate the climatic forcing on tree growth, and results revealed that the correlation patterns were consistent among the four sites, especially for high-passed data. We employed the principal components analysis method to obtain the first principal component (PC1) of the four chronologies and computed the correlations between PC1 and climate factors. The PC1 correlated significantly with winter (November–January) temperature, prior August and current May temperature, and precipitation in the previous September and current January and April, indicating that tree growth in this region was mainly limited by cold winter temperature and drought in early growing season and prior growing season (prior August and September). However, the climate–growth relationships were unstable; with an increase in temperature, the sensitivity of tree growth to temperature had decreased over the past few decades. Considering the instability of the climate–growth relationships, climate reconstructions based on tree rings in the study area should be approached with more caution.  相似文献   

17.
《Dendrochronologia》2014,32(3):230-236
Three tree-ring width chronologies were developed from 75 Picea schrenkiana trees ranging from low- to high-elevation in the mountains surrounding the Issyk-Kul Lake, Northeast Kyrgyzstan. The reliable chronologies extend back to the mid-18th and late-19th centuries. Spatial correlation analysis indicates that the chronologies for the relatively high-elevation trees contain large-scale climatic signals, while the chronology at relatively low elevation may reflect the local climate variability. The results of the response of tree growth to climate show that these chronologies contain an annual precipitation signal. Furthermore, the influence of temperature indicates mainly moisture stress that is enhanced with rising elevation. The tree-ring records also captured a wetting trend in eastern Central Asia over the past decades. These new tree-ring width chronologies provide reliable proxies of precipitation variability in Central Asia and contribute to the International Tree-Ring Data Bank.  相似文献   

18.
坡向对海拔梯度上祁连圆柏树木生长的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
选择青海省同德县南部河北林场的一个连续坡面,根据不同海拔和坡向设置4个采样点,采集祁连圆柏(Sabina przewalskii)树轮数据,分析不同海拔和坡向对树木生长的影响。结果表明:坡面上部3个采样点的树轮年表特征值均呈一定的变化规律——平均敏感值(MS)和标准差(SD)随海拔升高而增大,一阶自相关(AC)随海拔升高而递减,下限年表特征值均表现出与其他3点的不同,都是最值(MS和SD均最大,AC最小);年表间相关和主成分分析结果都显示出海拔梯度上的变化规律,但下限差异显著;树轮指数与当年6–8月平均气温的相关系数呈增强趋势,森林上限受当年7、8月平均气温影响较大,下限树轮指数不仅与当年6月和前一年11月的气温显著负相关,而且受前一年8月和当年5月的月降水量影响显著。与通常情况"下限树木生长受降水制约"比较,这里的温度作用增强而降水限制减弱。显然,坡向扭转是海拔梯度上影响祁连圆柏生长变化的重要因子。  相似文献   

19.
Climatic signals in beech tree-ring width series from Central Italy have been studied over different periods of time. Prewhitened tree-ring chronologies respond mainly to summer precipitation and they do not correlate in a significant manner with the winter North Atlantic oscillation (NAO) index. In this high-frequency pattern the NAO signs are only found on a small number of rings characterized by being very narrow or wide. By contrast, tree-ring width chronologies in which all the frequency components are conserved were significantly related to the NAO. The significant inverse correlation between actual measurements of ring width and NAO is a consequence of the availability of water in the soil at the beginning of the growing season. In fact, in the Mediterranean area the recharging of soil moisture depends on the amount of winter precipitation, which is inversely correlated with the NAO. Strong signals of winter precipitation and NAO are found in the low-frequency components of tree-ring growth. Received: 18 March 1999 / Revised: 29 February 2000 / Accepted: 1 March 2000  相似文献   

20.
为分析青藏高原东缘半湿润区不同树种树木生长对气候变化的响应规律,于川西米亚罗林区海拔3000 m左右(低海拔)采集铁杉、岷江冷杉、紫果云杉,海拔4000 m左右林线位置(高海拔)采集岷江冷杉、四川红杉,共计182棵树木年轮样芯,建立了不同树种的树轮宽度年表,对不同树种的年轮指数与各月气候因子进行相关分析.结果表明: 在低海拔处,树木生长与4、5月气温呈负相关,与4、5月降雨呈正相关,受到春季干旱胁迫的影响;但树种之间存在显著差异: 铁杉的生长受春季干旱胁迫影响最严重,岷江冷杉次之,紫果云杉所受影响很小.在高海拔处,树木生长主要受生长季温度的影响,岷江冷杉年轮指数与当年2、7月最低气温呈显著正相关,与上一年10月最高气温亦呈正相关;四川红杉年轮指数与5月最高气温呈显著正相关,但与2月均温、3月最低气温呈显著负相关.近几十年青藏高原东北缘气候有干暖化趋势,如果这种趋势持续发生,低海拔紫果云杉长势将超过铁杉和岷江冷杉;高海拔处的升温更有利于岷江冷杉的生长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号