首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
0ain-related somatosensory evoked potentials (SEPs) following CO2 laser stimulation were analyzed in normal volunteers. Low power and long wavelength CO2 laser stimuli to the hand induced a sharp pain which was associated with a large positive component, P320, recorded over the scalp. Amplitude decreased and latency increased with reduction in stimulus intensity and subjective pain feeling. P320 was maximal at the vertex but was distributed widely over the scalp. There were no topographic differences between left- and right-hand stimulation, or between hand and chest stimulation. Lidocaine injection to produce anesthetic nerve block resulted in loss of P320, but the potential was relatively preserved during ischemic nerve block. No potential corresponding to P320 could be recorded following electrical or mechanical tactile stimulation.We consider P320 to be generated by impulses arising from pain stimuli and ascending through Aδ fibers. We propose the thalamus as a generator source from considering its scalp topography, but pain-specific cognition or perception may also be involved in generating this potential.  相似文献   

2.
We recorded cortical potentials evoked by painful CO2 laser stimulation (pain SEP), employing an oddball paradigm in an effort to demonstrate event-related potentials (ERP) associated with pain. In 12 healthy subjects, frequent (standard) pain stimuli (probability 0.8) were delivered to one side of the dorsum of the left hand while rare (target) pain stimuli (probability 0.2) were delivered to the other side of the same hand. Subjects were instructed to perform either a mental count or button press in response to the target stimuli. Two early components (N2 and P2) of the pain SEP demonstrated a Cz maximal distribution, and showed no difference in latency, amplitude or scalp topography between the oddball conditions or between response tasks. In addition, another positive component (P3) following the P2 was recorded maximally at Pz only in response to the target stimuli with a peak latency of 593 msec for the count task and 560 msec for the button press task. Its scalp topography was the same as that for electric and auditory P3. The longer latency of pain P3 can be explained not only by its slower impulse conduction but also by the effects of task difficulty in the oddball paradigm employing the pain stimulus compared with electric and auditory stimulus paradigms. It is concluded that the P3 for the pain modality is mainly related to a cognitive process and corresponds to the P3 of electric and auditory evoked responses, whereas both N2 and P2 are mainly pain-related components.  相似文献   

3.
The aim of this study was to compare cerebral evoked potentials following selective activation of Aβ and Aδ fibers. In 15 healthy subjects, Aβ fibers were activated by electrical stimulation of the left radial nerve at the wrist. Aδ fibers were activated by short painful radian heat pulses, applied to the dorsum of the left hand by a CO2 laser. Evoked potentials were recorded with 15–27 scalp electrodes, evenly distributed over both hemispheres (bandpass 0.5–200 Hz). The laser-evoked potentials exhibited a component with a mean peak latency of 176 msec (N170). Its scalp topography showed a parieto-temporal maximum contralateral to the stimulus side. In contrast, the subsequent vertex negativity (N240), which appeared about 60 msec later, had a symmetrical scalp distribution. Electrically evoked potentials showed a component at 110 msec (N110), that had a topography similar to the laser-evoked N170. The topographies of the N170 and N110 suggest that they may both be generated in the secondary somatosensory cortex. There was no component in the electrically evoked potential that had a comparable interpeak latency to the following vertex potential: for N60 it was longer, for N110 it was shorter. On the other hand, in the laser-evoked potentials no component could be identified the topography of which corresponded to the primary cortical component N20 following electrical stimulation.  相似文献   

4.
Since our previous study of pain somatosensory evoked potentials (SEPs) following CO2 laser stimulation of the hand dorsum could not clarify whether the early cortical component NI was generated from the primary somatosensory cortex (SI) or the secondary somatosensory cortex (SII) or both, the scalp topography of SEPs following CO2 laser stimulation of the foot dorsum was studied in 10 normal subjects and was compared with that of the hand pain SEPs and the conventional SEPs following electrical stimulation of the posterior tibial nerve recorded in 8 and 6 of the 10 subjects, respectively. Three components (N1, N2 and P2) were recorded for both foot and hand pain SEPs. N1 of the foot pain SEPs was maximal at the midline electrodes (Cz or CPz) in all data where that potential was recognized, but the potential field distribution was variable among subjects and even between two sides within the same subject. N1 of the hand pain SEPs was maximal at the contralateral central or midtemporal electrode. The scalp distribution of N2 and P2, however, was not different between the foot and hand pain SEPs. The mean peak latency of N1 following stimulation of foot and hand was found to be 191 msec and 150 msec, respectively, but there was no significant difference in the interpeak latency of Nl-N2 between foot and hand stimulation. It is therefore concluded that NI of the foot pain SEPs is generated mainly from the foot area of SI. The variable scalp distribution of the N7 component of the foot pain SEPs is likely due to an anatomical variability among subjects and even between sides.  相似文献   

5.
We recorded CO2 laser evoked cerebral potentials in 6 healthy subjects using both a standard technique and an oddball paradigm. In the standard technique stimuli were aimed at the dorsum of the left hand with the subject passive; in the oddball paradigm, target infrequent stimuli (P = 0.15) were directed to one side of the dorsum of the left hand and the subject was instructed to count their occurrence, the frequent stimulus being delivered to the other side of the hand. In both standard and oddball frequent recordings, CO2 laser evoked potentials were a well-formed negative-positive complex with a peak latency and amplitude around 305 msec (to positivity) and 32 μV respectively. However, in the oddball target task a later potential was also recorded, with a mean latency and amplitude of 621 msec and 24 μV respectively which we believe to be a laser oddball potential. These results demonstrate that the CO2 potential is not altered by manipulations of attention to any significant extent and suggests that it is therefore closely related to the primary sensory input. They also provide further evidence of the non-specificity of the oddball potential across sensory modalities.  相似文献   

6.
Evoked potentials to the primary colours red, green, yellow and blue were recorded and compared with those evoked by white. The unpatterned 10° × 13° stimuli were generated with the aid of a colour monitor. Activity was depicted with 5 electrodes, the central electrode 5 cm above the inion and two on each side 5 and 10 cm apart from the central electrode.With equally bright colour stimuli a previously described early negative colour-dominated component N87 was localized in all subjects at the central occipital electrode while the following positivity P100 was clearly more lateralized to the peripheral electrodes. With half-field stimulation N87 showed a similar — paradoxical — lateralization to the ipsilateral electrodes as has been demonstrated for pattern reversal.The existence and localization of N87 could be confirmed also for blue colours, its amplitude independent of the blue luminance, its latency decreasing for definite additional brightness increments and decrements. The N87 to blue was of the same latency as the N87 components to other colours.N87 is mainly generated foveally and parafoveally, its amplitude saturates with stimuli larger than 6–8° in diameter.  相似文献   

7.
The diagastric nerve reflex response to stimulation of the upper lip was studied in urethan-anesthetized rabbits paralysed with pancuronium bromide. Rhythmic bursts of masticatory activity were evoked in the nerve by repetitive electrical stimulation of the motor cortex. The amplitude and latency of the reflex responses during fictive mastication were compared with preceding control values. When stimuli close to threshold were given, the largest and earliest responses occurred during the digastric burst. When intense stimuli were employed, the largest responses were out of phase with the burst, although the latency was still shortest when the motoneurons were rhythmically active. Since the pattern is essentially the same as that seen during normal mastication, we conclude that the cyclical modulation of reflex amplitude and latency is not the result of sensory feedback generated by the movements themselves but is instead governed by the central motor program.  相似文献   

8.
The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task.  相似文献   

9.
Effects of attention to, and probability of sudden changes in, repetitive stimuli on somatosensory evoked potentials (SEP) were studied. Low- (30 Hz) and high-frequency (140 Hz) vibratory stimuli were delivered in random order to the middle finger of the left hand with different presentation probabilities in different blocks. Also ignore conditions were administered.In the ignore conditions, the probability had no effect on SEPs. However, when the standard stimuli were omitted, the “deviants” elicited small N140 and P300 deflections not observed in response to deviants when standards were also present. In the attention conditions, deviant stimuli (targets) elicited large N250 and P300 deflections which increased in amplitude with a decreased target probability. However, when subjects counted infrequently presented “deviants” alone (standards omitted) the enhanced N140 and the P300 with shortened latency were elicited, but no N250 wave could be found. At the ipsilateral side, a distinct N200 deflection was seen which could be the N250 with a shorter latency because of an easier task (detection instead of discrimination). The results might be interpreted as suggesting that the somatosensory N250 is related to conscious detection of target stimuli.  相似文献   

10.
Field potentials (FP) and responses of single neurones to electrical stimulation of vibrissal pads have been recorded in motor cortex in the albino mature and developing rats. The FPs were characterized by 3-phasic shape and high stability in mature rats. The FPs evoked by contralateral stimuli have a range of onset latency of 4 to 24 ms (peak of distribution 8-11 ms); those to ipsilateral stimuli have a latency of 4 to 23 ms (peak of distribution 12-16 ms). Responses of single neurones were evoked with a latency of 9 to 20 ms. Usually, the FPs were evoked by both contralateral and ipsilateral stimulation, and in some tracks were effective only ipsilateral stimuli in the developing rats beginning from the 11th day of life. The FPs in such animals were less stable and more fatigable. During 2-4 weeks of life, FPs evoked by contralateral stimulation appeared with a latency of 15 to 46 ms; during the same period, a latency of single unit responses ranged between 20 to 33 ms. The FPs to ipsilateral stimuli appeared with a latency of 18 to 47 ms, a latency of single unit responses of 27 to 47 ms. The results indicate functional immaturity of vibrissal system up to the end of the first month of rat life.  相似文献   

11.
Repeated warm laser stimuli produce a progressive increase of the sensation of warmth and heat and eventually that of a burning pain. The pain resulting from repetitive warm stimuli is mediated by summated C fibre responses. To shed more light on the cortical changes associated with pain during repeated subnoxious warm stimulation, we analysed magnetoencephalographic (MEG) evoked fields in eleven subjects during application of repetitive warm laser stimuli to the dorsum of the right hand. One set of stimuli encompassed 10 laser pulses occurring at 2.5 s intervals. Parameters of laser stimulation were optimised to elicit a pleasant warm sensation upon a single stimulus with a rise of skin temperature after repeated stimulation not exceeding the threshold of C mechano-heat fibres. Subjects reported a progressive increase of the intensity of heat and burning pain during repeated laser stimulation in spite of only mild (4.8°C) increase of skin temperature from the first stimulus to the tenth stimulus. The mean reaction time, evaluated in six subjects, was 1.33 s, confirming involvement of C fibres. The neuromagnetic fields were modelled by five equivalent source dipoles located in the occipital cortex, cerebellum, posterior cingulate cortex, and left and right operculo-insular cortex. The only component showing statistically significant changes during repetitive laser stimulation was the late component of the contralateral operculo-insular source peaking at 1.05 s after stimulus onset. The amplitude increases of the late component of the contralateral operculo-insular source dipole correlated with the subjects' numerical ratings of warmth and pain. Results point to a pivotal role of the contralateral operculo-insular region in processing of C-fibre mediated pain during repeated subnoxious laser stimulation.  相似文献   

12.
In a complex choice reaction time experiment, patterned stimuli without luminance change were presented, and pattern-specific visual evoked potentials to lower half-field stimulation were recorded. Two experimental conditions were used. The first was the between-field selection, where square patterns were presented in either the lower or the upper half of the visual field. In a given stimulus run one of the half-fields was task-relevant, and the subjects' task was to press a microswitch to stimuli of higher duration value (GO stimuli), while they had to ignore shorter ones, i. e. stimuli of lower apparent spatial contrast (NOGO stimuli). They had to ignore the stimuli appearing in the irrelevant half-field (IRR stimuli). In order to ensure proper fixation, the subjects had to press another microswitch at the onset of a dim light at the fixation point (CRT stimuli). Our second experimental condition was the within-field selection, where the GO, NOGO, and IRR stimuli appeared in the lower half of the visual field. GO and NOGO were square patterns while IRR stimuli were constructed of circles, or vice versa. (The CRT stimuli were the same as in the previous condition.) Three pattern-specific visual evoked potential components were identified, i. e. CI (70 ms latency), CII (100 ms latency), and CIII (170 ms latency). There were marked selective attention effects on both the CI-CII and CII-CIII peak-to-peak amplitudes. In both experimental conditions, responses with the highest amplitude were evoked by the GO type of stimuli, while the IRR stimuli evoked the smallest responses. According to these results, attention effects on the pattern-specific visual evoked potentials in the first 200 ms cannot be attributed to a simple stimulus set kind of selection.  相似文献   

13.
隐神经C类纤维传入诱发小脑皮层电反应   总被引:1,自引:0,他引:1  
吴杰  陈培熹 《生理学报》1989,41(6):529-535
当弱刺激只引起隐神经A类纤维传入时,小脑皮层出现A-CEP,由潜伏期为11.8±3.5ms的早成分和312.1±17.5ms的晚成分组成;当强刺激同时引起A类和C类纤维传入时,出现AC-CEP类似A-CEP;用极化电流选择性阻断A类纤维传导后,只让C类纤维传入时,出现潜伏期为134.2±18.4ms的C-CEP。在Ⅵ小叶蚓部原裂附近C-CEP以正波为主,幅值最大,并在深层位相倒转。C-CEP的潜伏期较长,频率响应较低,幅值较小,随C类纤维传入量而变化,且对镇痛剂较敏感。结果表明C-CEP是由单纯C类纤维传入引起的,在小脑皮层内产生,是小脑皮层对慢痛信息传入的反应。提示C类纤维传入可以到达小脑皮层,引起诱发电位。当A和C类纤维同时传入时,C-CEP不出现,可能是被A类纤维传入所抑制。  相似文献   

14.
We recorded middle-latency auditory evoked magnetic fields from 9 healthy subjects with a 122-channel whole-head SQUID gradiometer. The stimuli were click triplets, 2.5 msec in total duration, delivered alternately to the two ears once every 333 msec. Contralateral clicks elicited P30m responses in 16 and P50m responses in 12 out of 18 hemispheres studied; ipsilateral clicks did so in 7 and 13 hemispheres, respectively. The field patterns were satisfactorily explained by current dipoles in 16 and 4 hemispheres for contra- and ipsilateral P30m, and in 4 and 10 hemispheres for contra- and ipsilateral P50m. The peak latencies of P30m and P50m were not affected by stimulation side. The results show that middle-latency auditory evoked responses receive a strong contribution from auditory cortical structures, and that differences of input latency to cortical auditory areas, evaluated from MLAEF latencies, do not explain the latency differences seen in late auditory evoked fields to contralateral vs. ipsilateral stimulation.  相似文献   

15.
This paper shows the results of computer simulation of changes in motoneuron (MN) firing evoked by a repetitively applied synaptic volley that consists of a single excitatory postsynaptic potential (EPSP). Spike trains produced by the threshold-crossing MN model were analyzed as experimental results. Various output functions were applied for analysis; the most useful was a peristimulus time histogram, a special modification of a raster plot and a peristimulus time frequencygram (PSTF). It has been shown that all functions complement each other in distinguishing between the genuine results evoked by the excitatory volley and the secondary results of the EPSP-evoked synchronization. The EPSP rising edge was best reproduced by the PSTF. However, whereas the EPSP rise time could be estimated quite accurately, especially for high EPSP amplitudes at high MN firing rates, the EPSP amplitude estimate was also influenced by factors unrelated to the synaptic volley, such as the afterhyperpolarization duration of the MN or the amplitude of synaptic noise, which cannot be directly assessed in human experiments. Thus, the attempts to scale any estimate of the EPSP amplitude in millivolts appear to be useless. The decaying phase of the EPSP cannot be reproduced accurately by any of the functions. For the short EPSPs, it is extinguished by the generation of an action potential and a subsequent decrease in the MN excitability. For longer EPSPs, it is inseparable from the secondary effects of synchronization. Thus, the methods aimed at extracting information about long-lasting and complex postsynaptic potentials from stimulus-correlated MN firing, should be refined, and the theoretical considerations checked in computer simulations.  相似文献   

16.
It has long been recognized that humans can perceive respiratory loads. There have been several studies on the detection and psychophysical quantification of mechanical load perception. This investigation was designed to record cortical sensory neurogenic activity related to inspiratory mechanical loading in humans. Inspiration was periodically occluded in human subjects while the electroencephalographic (EEG) activity in the somatosensory region of the cerebral cortex was recorded. The onset of inspiratory mouth pressure (Pm) was used to initiate signal averaging of the EEG signals. Cortical evoked potentials elicited by inspiratory occlusions were observed when C3 and C alpha were referenced to CZ. This evoked potential was not observed with the control (unoccluded) breaths. There was considerable subject variability in the peak latencies that was related to the differences in the inspiratory drive, as measured by occlusion pressure (P0.1). The results of this study demonstrate that neurogenic activity can be recorded in the somatosensory region of the cortex that is related to inspiratory occlusions. The peak latencies are longer than analogous somatosensory evoked potentials elicited by stimulation of the hand and foot. It is hypothesized that a portion of this latency difference is related to the time required for the subject to generate sufficient inspiratory force to activate the afferents mediating the cortical response.  相似文献   

17.
Crayfish tailflips have been intensively studied to reveal the decision-making processes and neural organisation underlying a stereotyped escape behaviour. Three behaviours mediated by different neural pathways have been well described: medial giant, lateral giant and non-giant tailflips. It has proved difficult to distinguish between the three without invasive or restrictive experimental manipulation. We report unambiguous differences between the signals generated by the crayfish Cherax destructor during the three types of tailflip when recorded by bath electrodes placed in the holding aquarium. Using our ability to distinguish between the different behaviours in freely moving animals we examined the relationship between the type of tailflip evoked by stimulation to different parts of the body. The transition zone between medial and lateral giant tailflips is the thoracic-abdominal border but it is not absolute and some stimuli produce responses that cannot be unambiguously assigned to either behavioural category. We examined the latency between stimulation at different points down the length of the body and the appearance of the electrical signal accompanying escape for both medial and lateral tailflips. We used two methods to estimate the proportion of the latency accounted for by giant fibre conduction velocity. The results support current views of the differences between the activation sites of the two giant fibre systems and suggest why stimulation in the transition zone results in ambiguous outcomes.  相似文献   

18.
Short-, middle- and long-latency auditory evoked potentials (SAEPs, MAEPs and LAEPs) were examined in 12 subjects with Down's syndrome and in 12 age-matched normal subjects. In comparison with the normal subjects, Down subjects showed shorter latencies for SAEP peaks II, III, IV and V (and correspondingly shorter interpeak intervals I–II and I–III) so long as stimulus intensity was at least 45 dB SL. The MAEP peak Na had a longer latency in Down subjects than in normal subjects, but not the Pa latency. In passive oddball experiments for LAEPs, the latencies of all components from N1 to P3 were progressively longer in Down subjects, and the N2-P3 amplitude increased slightly between the first and fourth blocks of stimuli (whereas in the normal subjects it decreased). These alterations in auditory evoked potentials, which may correlate with cerebral alterations in organization and responsiveness responsible for deficient information processing, may constitute an electrophysiological pattern that is characteristic of Down's syndrome.  相似文献   

19.
Responses of neurons in the bulbar reticular area to separate and simultaneous stimulation of the forelimbs were recorded extracellularly in chloralose-anaesthetized cats. On increasing the stimulus intensity the number of spikes per response increased while the initial latency and interspike intervals decreased in accordance with the functional property of the neuron. Responses evoked by simultaneous stimulation displayed more spikes and a shorter latency than those evoked by separate stimuli of corresponding intensities. The differences in the responses evoked simultaneously and the sums of responses evoked separately showed characteristic distributions as a function of the latter. Three types of distribution were distinguished. The results indicate that stimulus-response relations play a determining role in the mechanism of spatial integration.  相似文献   

20.
Short latency vestibular evoked potentials (VsEPs) to angular acceleration impulses (maximal intensity 20,000°/sec2, rise time 1.5–3 msec) were recorded by skin electrodes in cats before and after various surgical procedures. Under general anesthesia, the animals underwent unilateral labyrinthectomy and the VsEPs in response to stimulation of the remaining inner ear in the plane of the lateral semicircular canal (SCC) with the head flexed 20°–25° were recorded as a baseline. The lateral SCC was then selectively obliterated near its ampulla. This induced major changes in the VsEPs recorded in response to stimulation of the remaining inner ear in this plane: the first 2 VsEP waves were absent, and only longer latency, smaller amplitude waves were present in response to both clockwise and counterclockwise stimulation. On the other hand, obliteration of the anterior and posterior SCCs and, in addition, destruction of both maculae were without major effects on the first 2 VsEP waves in response to excitatory stimulation. The results confirm that when the head is flexed 20°–25° and stimulated with angular acceleration impulses in the horizontal plane, the major site of initiation of the VsEPs in cats and probably in man is the crista ampullaris of the lateral SCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号