首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
NMR spectroscopy was used to determine the labeling patterns of the ribose moieties of ribonucleosides purified from Methanospirillum hungatei, Methanococcus voltae, Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanosarcina barkeri and Methanobacterium bryantii labeled with 13C-precursors. In most methanogens tested ribose was labeled in a manner consistent with the operation of the oxidative branch of the pentose phosphate pathway. In contrast, transaldolase and transketolase reactions typical of a partial nonoxidative pentose phosphate pathway are hypothesized to explain the different labeling patterns and enrichments of carbon atoms observed in the ribose moiety of Methanococcus voltae. The source of erythrose 4-phosphate needed for the transaldolase reaction proposed in Methanococcus voltae, and for biosynthesis of aromatic amino acids in methanogenic bacteria in general, was assessed. Phenylalanine carbon atom C-7 was labeled by [1-13C]pyruvate in Methanospirillum hungatei, Methanococcus voltae, and Methanococcus jannaschii, the only methanogens which incorporated sufficient label from pyruvate for testing. Reductive carboxylation of a triose precursor (derived from pyruvate) to synthesize erythrose 4-phosphate is consistent with the labeling patterns observed in phenylalanine and ribose.Abbreviation TCA Tricarboxylic acidIssued as NRCC Publication No. 37382  相似文献   

2.
To evaluate the strategy of supplying ribose 5-phosphate to the purine-nucleotide pathway exclusively via the nonoxidative route, the glucose 6-phosphate dehydrogenase gene zwf was disrupted in inosine- and 5′-xanthylic acid-producers of Corynebacterium ammoniagenes. In both producers, interruption of the oxidative route caused a decrease in production yields of about 50%. Attempts to increase the capacity of the nonoxidative route through overexpression of the transketolase or transaldolase gene in the zwf mutants led to no discernable effects on production, indicating that, in C. ammoniagenes, the nonoxidative route alone cannot provide sufficient ribose 5-phosphate for high-level production, although nonoxidative synthesis of the precursor is possible. Electronic Publication  相似文献   

3.
4.
    
In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and 13C-metabolic flux analysis (13C-MFA). Here, cells were grown in parallel cultures with [1-13C]glucose and [U-13C]glucose as tracers and 13C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of 13C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for 13C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased 13C-flux measurements in C. acetobutylicum.  相似文献   

5.
Current (13)C labeling experiments for metabolic flux analysis (MFA) are mostly limited by either the requirement of isotopic steady state or the extremely high computational effort due to the size and complexity of large metabolic networks. The presented novel approach circumvents these limitations by applying the isotopic non-stationary approach to a local metabolic network. The procedure is demonstrated in a study of the pentose phosphate pathway (PPP) split-ratio of Penicillium chrysogenum in a penicillin-G producing chemostat-culture grown aerobically at a dilution rate of 0.06h(-1) on glucose, using a tracer amount of uniformly labeled [U-(13)C(6)] gluconate. The rate of labeling inflow can be controlled by using different cell densities and/or different fractions of the labeled tracer in the feed. Due to the simplicity of the local metabolic network structure around the 6-phosphogluconate (6pg) node, only three metabolites need to be measured for the pool size and isotopomer distribution. Furthermore, the mathematical modeling of isotopomer distributions for the flux estimation has been reduced from large scale differential equations to algebraic equations. Under the studied cultivation condition, the estimated split-ratio (41.2+/-0.6%) using the novel approach, shows statistically no difference with the split-ratio obtained from the originally proposed isotopic stationary gluconate tracing method.  相似文献   

6.
In this study, we observed that low glucose or fructose reduces the increase in hypoxia-inducible factor-1α (HIF-1α) protein under hypoxic conditions. 6-Aminonicotinamide (6-AN), an inhibitor of the pentose phosphate pathway (PPP), also inhibited the increase of HIF-1α protein under hypoxic conditions, while the reduced protein levels of HIF-1α by low glucose were apparently recovered by the addition of MG-132 or NADPH. Moreover, siRNA for glucose-6-phosphate dehydrogenase, which produces NADPH, reduced the increase in HIF-1α protein. On the other hand, cobalt-induced expression of HIF-1α protein was not affected by low glucose or 6-AN under normoxic conditions. In conclusion, glucose metabolism through the PPP, but not in glycolysis, plays an important role in the stabilization of HIF-1α protein under hypoxic conditions.  相似文献   

7.
Transketolase is a connecting link between glycolytic and pentose phosphate pathway, which is considered as the rate-limiting step due to synthesis of large number of ATP molecule and it can be proposed as a plausible target facilitating the growth of cancerous cells suggesting its potential role in cancer. Oxythiamine, an antimetabolite has been proved to be an efficient anticancerous compound in vitro, but its structural elucidation of the inhibitory mechanism has not yet been done against the human transketolase-like 1 protein (TKTL1). The three-dimensional (3D) structure of TKTL1 protein was modeled and subjected for refinement, stability and validation. Based on the reported homologs of transketolase (TKT), the active site residues His46, Ser49, Ser52, Ser53, Ile56, Leu82, Lys84, Leu123, Ser125, Glu128, Asp154, His160, Thr216 and Lys218 were identified and considered for molecular-modeling studies. Docking studies reveal the H-bond interactions with residues Ser49 and Lys218 that could play a major role in the activity of TKTL1. Molecular dynamics (MD) simulation study was performed to reveal the comparative stability of both native and complex forms of TKTL1. MD trajectory at 30?ns, confirm the role of active site residues Ser49, Lys84, Glu128, His160 and Lys218 in suppressing the activity of TKTL1. Glu128 is observed to be the most important residue for deprotonation state of the aminopyrimidine moiety and preferred to be the site of inhibitory action. Thus, the proposed mechanism of inhibition through in silico studies would pave the way for structure-oriented drug designing against cancer.  相似文献   

8.
Evidence for a pentose phosphate pathway in Helicobacter pylori   总被引:1,自引:0,他引:1  
Abstract Evidence for the presence of enzymes of the pentose phosphate pathway in Helicobacter pylori was obtained using 31P nuclear magnetic resonance spectroscopy. Activities of enzymes which are part of the oxidative and non-oxidative phases of the pathway were observed directly in incubations of bacterial lysates with pathway intermediates. Generation of NADPH and 6-phosphogluconate from NADP+ and glucose 6-phosphate indicated the presence of glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase. Reduction of NADP+ with production of ribulose 5-phosphate from 6-phosphogluconate revealed 6-phosphogluconate dehydrogenase activity. Phosphopentose isomerase and transketolase activities were observed in incubations containing ribulose 5-phosphate and xylulose 5-phosphate, respectively. The formation of erythrose 4-phosphate from xylulose 5-phosphate and ribose 5-phosphate suggested the presence of transaldolase. The activities of this enzyme and triosephosphate isomerase were observed directly in incubations of bacterial lysates with dihydroxyacetone phosphate and sedoheptulose 7-phosphate. Glucose-6-phosphate isomerase activity was measured in incubations with fructos 6-phosphate. The presence of these enzymes in H. pylori suggested the existence of a pentose phosphate pathway in the bacterium, possibly as a mechanism to provide NADPH for reductive biosynthesis and ribose 5-phosphate for synthesis of nucleic acids.  相似文献   

9.
  总被引:3,自引:0,他引:3  
After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.  相似文献   

10.
Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts   总被引:2,自引:0,他引:2  
In a quantitative comparative study, we elucidated the glucose metabolism in fourteen hemiascomycetous yeasts from the Genolevures project. The metabolic networks of these different species were first established by (13)C-labeling data and the inventory of the genomes. This information was subsequently used for metabolic-flux ratio analysis to quantify the intracellular carbon flux distributions in these yeast species. Firstly, we found that compartmentation of amino acid biosynthesis in most species was identical to that in Saccharomyces cerevisiae. Exceptions were the mitochondrial origin of aspartate biosynthesis in Yarrowia lipolytica and the cytosolic origin of alanine biosynthesis in S. kluyveri. Secondly, the control of flux through the TCA cycle was inversely correlated with the ethanol production rate, with S. cerevisiae being the yeast with the highest ethanol production capacity. The classification between respiratory and respiro-fermentative metabolism, however, was not qualitatively exclusive but quantitatively gradual. Thirdly, the flux through the pentose phosphate (PP) pathway was correlated to the yield of biomass, suggesting a balanced production and consumption of NADPH. Generally, this implies the lack of active transhydrogenase-like activities in hemiascomycetous yeasts under the tested growth condition, with Pichia angusta as the sole exception. In the latter case, about 40% of the NADPH was produced in the PP pathway in excess of the requirements for biomass production, which strongly suggests the operation of a yet unidentified mechanism for NADPH reoxidation in this species. In most yeasts, the PP pathway activity appears to be driven exclusively by the demand for NADPH.  相似文献   

11.
We have recently reported about a Saccharomyces cerevisiae strain that, in addition to the Piromyces XylA xylose isomerase gene, overexpresses the native genes for the conversion of xylulose to glycolytic intermediates. This engineered strain (RWB 217) exhibited unprecedentedly high specific growth rates and ethanol production rates under anaerobic conditions with xylose as the sole carbon source. However, when RWB 217 was grown on glucose-xylose mixtures, a diauxic growth pattern was observed with a relatively slow consumption of xylose in the second growth phase. After prolonged cultivation in an anaerobic, xylose-limited chemostat, a culture with improved xylose uptake kinetics was obtained. This culture also exhibited improved xylose consumption in glucose-xylose mixtures. A further improvement in mixed-sugar utilization was obtained by prolonged anaerobic cultivation in automated sequencing-batch reactors on glucose-xylose mixtures. A final single-strain isolate (RWB 218) rapidly consumed glucose-xylose mixtures anaerobically, in synthetic medium, with a specific rate of xylose consumption exceeding 0.9 gg(-1)h(-1). When the kinetics of zero trans-influx of glucose and xylose of RWB 218 were compared to that of the initial strain, a twofold higher capacity (V(max)) as well as an improved K(m) for xylose was apparent in the selected strain. It is concluded that the kinetics of xylose fermentation are no longer a bottleneck in the industrial production of bioethanol with yeast.  相似文献   

12.
The physiological and metabolic responses to gnd knockout in Escherichia coli K-12 was quantitatively investigated by using the (13)C tracer experiment (GC-MS/NMR) together with the enzyme activity analysis. It was shown that the general response to the gene knockout was the local flux rerouting via Entner-Doudoroff pathway and the direction reversing via non-oxidative pentose phosphate pathway (PPP). The mutant was found to direct higher flux to phosphoglucose isomerase reaction as compared to the wild-type, but the respiratory metabolism was comparable in both strains. The anaplerotic pathway catalyzed by malic enzyme was identified in the mutant, which was accompanied with an up-regulation of phosphoenolpyruvate carboxylase and down-regulation of phosphoenolpyruvate carboxykinase. The presented results provide first evidence that compensatory mechanism existed in PPP and anaplerotic pathway in response to the gnd deletion.  相似文献   

13.
The cumulus oocyte complexes (COCs) were obtained from local abattoir. After aspiration, the COCs were allotted into four treatments to evaluation of brilliant cresyl blue (BCB) test. Control treatment (C): oocytes were cultured directly (without exposure to BCB) after recovery in in vitro production (IVP) process. Oocyte treatment (OBCB): immediately after aspiration, COCs were incubated in modified Dulbecco's phosphate-buffered saline (mDPBS) supplemented with 26 μM of BCB for 90 min and classified into two classes: oocytes with blue cytoplasm coloration (OBCB+: more competent oocytes) and oocytes without blue cytoplasm coloration (OBCB−: low competent oocytes). Directly after classification, the oocytes were maintained undisrupted in the IVP process. Zygote treatment (ZBCB): After oocyte collection, maturation and fertilization, zygotes were stained with BCB for 10 min and categorized into three ways, according to whether they were highly stained (ZBCB++: low competent zygotes), moderately stained (ZBCB+: moderate competent zygotes) and unstained (ZBCB−: more competent zygotes). Directly after classification, the zygotes were maintained undisrupted in the culture process. Oocyte and zygote treatments (OBCB/ZBCB): COCs were stained with BCB after recovery and classified into two classes (OBCB+ and OBCB−). After fertilization, the zygotes produced from OBCB+ and OBCB− oocytes were further stained with BCB for 10 min and categorized six ways (OBCB+/ZBCB++, OBCB+/ZBCB+, OBCB+/ZBCB−, OBCB−/ZBCB++, OBCB−/ZBCB+ and OBCB−/ZBCB−). Directly after classification, the zygotes were maintained undisrupted in the culture process. The selection rate produced from OBCB treatment (OBCB+; 54.3%) was greater (P < 0.05) than ZBCB treatment (ZBCB−; 44.3%). In addition, the selection rate produced from double application (combination of oocyte and zygote selection) of BCB test (OBCB+/ZBCB−: 28.8%) was less (P < 0.01) than single application of BCB test (ZBCB−: 44.3%or OBCB+: 54.3%). The percentage of blastocyst production from OBCB+ oocytes (35.7%) and ZBCB− zygotes (36.6%) were greater (P < 0.05) than that from C oocytes (25.7%), OBCB− oocytes (16.5%), ZBCB++ (13.5%) and ZBCB+ zygotes (21.3%). However, there were no significant differences (P > 0.05) in the percentages of blastocyst production between OBCB+ oocytes (35.7%) and ZBCB− zygotes (36.6%). The proportion of blastocyst production from double application of BCB test (OBCB+/ZBCB−: 48.0%) was greater (P < 0.05) than that from single application of BCB test (OBCB+: 35.7% or ZBCB−: 36.6%). In conclusion, current results confirmed that combination of oocyte and zygote selection by BCB test enhanced the efficiency of selecting for high quality embryos, compared to the single BCB test.  相似文献   

14.
6-Phosphogluconate dehydrogenase has been purified from human brain to a specific activity of 22.8 U/mg protein. The molecular weight was 90,000. At low ionic strengths enzyme activity increased, due to an increase in Vmax and a decrease in Km for 6-phosphogluconate, and activity subsequently decreased as the ionic strength was increased (above 0.12). Both 6-phosphogluconate and NADP+ provided good protection against thermal inactivation, with 6-phosphogluconate also providing considerable protection against loss of activity caused by p-chloromercuribenzoate and iodoacetamide. Initial velocity studies indicated the enzyme mechanism was sequential. NADPH was a competitive inhibitor with respect to NADP+, and the Ki values for this inhibition were dependent on the concentration of 6-phosphogluconate. Product inhibition by NADPH was noncompetitive when 6-phosphogluconate was the variable substrate, whereas inhibition by the products CO2 and ribulose 5-phosphogluconate and NADP+ were varied. In totality these data suggest that binding of substrates to the enzyme is random. CO2 and ribulose 5-phosphate are released from the enzyme in random order with NADPH as the last product released.  相似文献   

15.
  总被引:1,自引:3,他引:1  
Abstract: Catecholamines added in vitro in rat brain synaptosomes activate the decarboxylation of glucose radioactively labelled on carbon 1, suggesting an effective activation of the pentose phosphate pathway. Stimulation also occurred with phenazine methosulphate, reduced glutathione and hydrogen peroxide. The activation of the pentose phosphate pathway by 5-hydroxytryptamine, noradrenaline and dopamine is ascribed to the activation of monoamine oxidase, producing both the respective biogenic aldehyde and hydrogen peroxide. Evidence is presented that the further metabolism of the aldehyde by aldehyde reductase and the removal of hydrogen peroxide by glutathione peroxidase both release the limitation of N ADP+ availability for the pentose phosphate pathway by leading to the oxidation of NADPH. The relevance of the maintenance of reduced NADP+ on brain is discussed in relation to the metabolism of glutathione and to lipid peroxidation.  相似文献   

16.
Abstract: Cerebral pentose phosphate pathway (PPP) activity has been linked to NADPH-dependent anabolic pathways, turnover of neurotransmitters, and protection from oxidative stress. Research on this potentially important pathway has been hampered, however, because measurement of regional cerebral PPP activity in vivo has not been possible. Our efforts to address this need focused on the use of a novel isotopically substituted glucose molecule, [1,6-13C2,6,6-2H2]glucose, in conjunction with microdialysis techniques, to measure cerebral PPP activity in vivo, in freely moving rats. Metabolism of [1,6-13C2,6,6-2H2]glucose through glycolysis produces [3-13C]lactate and [3-13C,3,3-2H2]lactate, whereas metabolism through the PPP produces [3-13C,3,3-2H2]lactate and unlabeled lactate. The ratios of these lactate isotopomers can be quantified using gas chromatography/mass spectrometry (GC/MS) for calculation of PPP activity, which is reported as the percentage of glucose metabolized to lactate that passed through the PPP. Following addition of [1,6-13C2,6,6-2H2]glucose to the perfusate, labeled lactate was easily detectable in dialysate using GC/MS. Basal forebrain and intracerebral 9L glioma PPP values (mean ± SD) were 3.5 ± 0.4 (n = 4) and 6.2 ± 0.9% (n = 4), respectively. Furthermore, PPP activity could be stimulated in vivo by addition of phenazine methosulfate, an artificial electron acceptor for NADPH, to the perfusion stream. These results show that the activity of the PPP can now be measured dynamically and regionally in the brains of conscious animals in vivo.  相似文献   

17.
    
Metabolically engineered Escherichia coli MEC143 with deletions of the ptsG, manZ, glk, pfkA, and zwf genes converts pentoses such as arabinose and xylose into glucose, with the dephosphorylation of glucose‐6‐phosphate serving as the final step. To determine which phosphatase mediates this conversion, we examined glucose formation from pentoses in strains containing knockouts of six different phosphatases singly and in combination. Deletions of single phosphatases and combinations of multiple phosphatases did not eliminate the accumulation of glucose from xylose or arabinose. Overexpression of one phosphatase, haloacid dehalogenase‐like phosphatase 12 coded by the ybiV gene, increased glucose yield significantly from 0.26 to 0.30 g/g (xylose) and from 0.32 to 0.35 g/g (arabinose). Growing cells under phosphate‐limited steady‐state conditions increased the glucose yield to 0.39 g glucose/g xylose, but did not affect glucose yield from arabinose (0.31 g/g). No single phosphatase is exclusively responsible for the conversion of glucose‐6‐phosphate to glucose in E. coli MEC143. Phosphate‐limited conditions are indeed able to enhance glucose formation in some cases, with this effect likely influenced by the different phosphate demands when E. coli metabolizes different carbon sources.  相似文献   

18.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:6,自引:1,他引:6  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等.葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中.本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用.  相似文献   

19.
20.
    
Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31 mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33 mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5 mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号