首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial biolipid production has become an important part of making biofuel production economically feasible. Genetic engineering has been used to improve the ability of Yarrowia lipolytica, an oleaginous yeast, to produce lipids using glucose-based media. However, few studies have examined lipid accumulation by Y. lipolytica׳s ability to utilize other hexose sugars, and as of yet, the rate-limiting steps in this process are unidentified. In this study, we investigated the de novo accumulation of lipids by Y. lipolytica when grown in glucose, fructose, and sucrose. Three Y. lipolytica wild-type (WT) strains of varied origin differed significantly in their lipid production, growth, and fructose utilization. Hexokinase (ylHXK1p) activity partially explained these differences. Overexpression of the ylHXK1 gene led to increased hexokinase activity (6.5–12 times higher) in the mutants versus the WT strains; a pronounced reduction in cell filamentation in mutants grown in fructose-based media; and improved biomass production, particularly in the mutant whose parent had shown the lowest growth capacity in fructose (French strain W29). All mutants showed improved lipid yield and production when grown on fructose, although the effect was strain dependent (23–55% improvement). Finally, we overexpressed ylHXK1 in a highly modified strain of Y. lipolytica W29 engineered to optimize oil production. This modification was combined with Saccharomyces cerevisiae invertase gene expression to evaluate the resulting mutant׳s ability to produce lipids using cheap industrial substrates, namely sucrose (a major component of molasses). Sucrose turned out to be a better substrate than either of its building blocks, glucose or fructose. Over its 96 h of growth in the bioreactors, this highly modified strain produced 9.15 g L−1 of lipids, yielding 0.262 g g−1 of biomass.  相似文献   

2.
Microbial lipid production using lignocellulosic biomass is considered an alternative for biodiesel production. In this study, 418 yeast strains were screened to find efficient oleaginous yeasts which accumulated large quantities of lipid when cultivated in lignocellulosic sugars. Preliminary screening by Nile red staining revealed that 142 strains contained many or large lipid bodies. These strains were selected for quantitative analysis of lipid accumulation by shaking flask cultivation in nitrogen-limited medium II containing 70 g/L glucose or xylose or mixture of glucose and xylose in a ratio of 2:1. Rhodosporidium fluviale DMKU-SP314 produced the highest lipid concentration of 7.9 g/L when cultivated in the mixture of glucose and xylose after 9 days of cultivation, which was 55.0% of dry biomass (14.3 g/L). The main composition of fatty acids were oleic acid (40.2%), palmitic acid (25.2%), linoleic acid (17.9%) and stearic acid (11.1%). Moreover, the strain DMKU-SP314 could grow and produce lipid in a medium containing predominantly lignocellulose degradation products, namely, acetic acid, formic acid, furfural, 5-hydroxymethylfurfural (5-HMF) and vanillin, with however, some inhibitory effects. This strain showed high tolerance to acetic acid, 5-HMF and vanillin. Therefore, R. fluviale DMKU-SP314 is a promising strain for lipid production from lignocellulosic hydrolysate.  相似文献   

3.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

4.
Yarrowia lipolytica is considered as a potential candidate for succinic acid production because of its innate ability to accumulate citric acid cycle intermediates and its tolerance to acidic pH. Previously, a succinate-production strain was obtained through the deletion of succinate dehydrogenase subunit encoding gene Ylsdh5. However, the accumulation of by-product acetate limited further improvement of succinate production. Meanwhile, additional pH adjustment procedure increased the downstream cost in industrial application. In this study, we identified for the first time that acetic acid overflow is caused by CoA-transfer reaction from acetyl-CoA to succinate in mitochondria rather than pyruvate decarboxylation reaction in SDH negative Y. lipolytica. The deletion of CoA-transferase gene Ylach eliminated acetic acid formation and improved succinic acid production and the cell growth. We then analyzed the effect of overexpressing the key enzymes of oxidative TCA, reductive carboxylation and glyoxylate bypass on succinic acid yield and by-products formation. The best strain with phosphoenolpyruvate carboxykinase (ScPCK) from Saccharomyces cerevisiae and endogenous succinyl-CoA synthase beta subunit (YlSCS2) overexpression improved succinic acid titer by 4.3-fold. In fed-batch fermentation, this strain produced 110.7 g/L succinic acid with a yield of 0.53 g/g glycerol without pH control. This is the highest succinic acid titer achieved at low pH by yeast reported worldwide, to date, using defined media. This study not only revealed the mechanism of acetic acid overflow in SDH negative Y. lipolytica, but it also reported the development of an efficient succinic acid production strain with great industrial prospects.  相似文献   

5.
Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-ALCS displayed significantly increased anaerobic growth rate (0.203±0.006 h?1) and xylose consumption rate (1.866 g g?1 h?1) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.  相似文献   

6.
Lignocellulosic biomass shows high potential as a renewable feedstock for use in biodiesel production via microbial fermentation. Yarrowia lipolytica, an emerging oleaginous yeast, has been engineered to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into lipids for lignocellulosic biodiesel production. Yet, the lipid yield from xylose or lignocellulosic biomass remains far lower than that from glucose. Here we developed an efficient xylose‐utilizing Y. lipolytica strain, expressing an isomerase‐based pathway, to achieve high‐yield lipid production from lignocellulosic biomass. The newly developed xylose‐utilizing Y. lipolytica, YSXID, produced 12.01 g/L lipids with a maximum yield of 0.16 g/g, the highest ever reported, from lignocellulosic hydrolysates. Consequently, this study shows the potential of isomerase‐based xylose‐utilizing Y. lipolytica for economical and sustainable production of biodiesel and oleochemicals from lignocellulosic biomass.  相似文献   

7.
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6 g/L, with the yield of 0.48 g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6 g/L 3-HP at a yield of 0.51 g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.  相似文献   

8.
The INU1 gene encoding exo-inulinase cloned from Kluyveromyces marxianus CBS 6556 was ligated into the surface display plasmid and expressed in the cells of the marine-derived yeast Yarrowia lipolytica which can produce citric acid. The expressed inulinase was immobilized on the yeast cells. The activity of the immobilized inulinase with 6 × His tag was found to be 22.6 U mg?1 of cell dry weight after cell growth for 96 h. The optimal pH and temperature of the displayed inulinase were 4.5 and 50 °C, respectively and the inulinase was stable in the pH range of 3–8 and in the temperature range of 0–50 °C. During the inulin hydrolysis, the optimal inulin concentration was 12.0% and the optimal amount of added inulinase was 181.6 U g?1 of inulin. Under such conditions, over 77.9% of inulin was hydrolyzed within 10 h and the hydrolysate contained main monosaccharides and disaccharides, and minor trisaccharides. During the citric acid production in the flask level, the recombinant yeast could produce 77.9 g L?1 citric acid and 5.3 g L?1 iso-citric acid from inulin while 68.9 g L?1 of citric acid and 4.1 g L?1 iso-citric acid in the fermented medium were attained within 312 h of the 2-L fermentation, respectively.  相似文献   

9.
10.
Fatty acids (FAs) are promising precursors of advanced biofuels. This study investigated conversion of acetic acid (HAc) to FAs by an engineered Escherichia coli strain. We combined established genetic engineering strategies including overexpression of acs and tesA genes, and knockout of fadE in E. coli BL21, resulting in the production of ~1 g/L FAs from acetic acid. The microbial conversion of HAc to FAs was achieved with ~20% of the theoretical yield. We cultured the engineered strain with HAc-rich liquid wastes, which yielded ~0.43 g/L FAs using waste streams from dilute acid hydrolysis of lignocellulosic biomass and ~0.17 g/L FAs using effluent from anaerobic-digested sewage sludge. 13C-isotopic experiments showed that the metabolism in our engineered strain had high carbon fluxes toward FAs synthesis and TCA cycle in a complex HAc medium. This proof-of-concept work demonstrates the possibility for coupling the waste treatment with the biosynthesis of advanced biofuel via genetically engineered microbial species.  相似文献   

11.
We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and 13C-metabolic flux analysis (13C-MFA) with [1,6-13C]glucose, [5-13C]xylose, and [1,6-13C]glucose+[5-13C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90 °C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81 °C, the maximum growth rate on glucose and xylose was 0.44 and 0.46 h−1, respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. 13C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, 13C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, 13C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain.  相似文献   

12.
Summary One strain each of the fungus,Aspergillus niger, and the yeast,Saccharomycopsis lipolytica, were investigated for their ability to produce citric acid from the sugars present in hemicellulose hydrolysates.S. lipolytica produced citric acid as efficiently from mannose as from glucose, but failed to assimilate xylose, arabinose or galactose.A. niger readily assimilated mannose, xylose and arabinose, and produced citric acid from these sugars although the yields were lower than from glucose. A possible inhibitory effect of arabinose on citric acid production from other sugars was observed usingA. niger.  相似文献   

13.
Thermobifida fusca not only produces cellulases, hemicellulases and xylanases, but also excretes butyric acid. In order to achieve a high yield of butyric acid, the effect of different carbon sources: mannose, xylose, lactose, cellobiose, glucose, sucrose and acetates, on butyric acid production was studied. The highest yield of butyric acid was 0.67 g/g C (g-butyric acid/g-carbon input) on cellobiose. The best stir speed and aeration rate for butyric acid production were found to be 400 rpm and 2 vvm in a 5-L fermentor. The maximum titer of 2.1 g/L butyric acid was achieved on 9.66 g/L cellulose. In order to test the production of butyric acid on lignocellulosic biomass, corn stover was used as the substrate, on which there was 2.37 g/L butyric acid produced under the optimized conditions. In addition, butyric acid synthesis pathway was identified involving five genes that catalyzed reactions from acetyl-CoA to butanoyl-CoA in T. fusca.  相似文献   

14.
Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid.  相似文献   

15.
16.
《Process Biochemistry》2014,49(3):457-465
This work investigated effects of lignocellulose degradation products on cell biomass and lipid production by Cryptococcus curvatus. Furfural was found to have the strongest inhibitory effect. For the three phenolic compounds tested, vanillin was the most toxic, while PHB and syringaldehyde showed comparable inhibitions in the concentration range of 0–1.0 g/L. Generally little significant differences on the relative cell biomass and lipid contents at the same concentrations of tested compounds were observed between glucose and xylose as a sole carbon source. At 1.0 g/L of furfural, the cell biomass and lipid content decreased by 78.4% and 61.0% for glucose as well as 72.0% and 59.3% for xylose, respectively. C. curvatus ceased to grow at concentrations of PHB over 1.0 g/L or vanillin over 1.5 g/L. The strain could survive in the presence of syringaldehyde up to 2.0 g/L for glucose or 1.5 g/L for xylose. The compounds’ negative impact was reduced by an increase in inoculum size and a 10% (v/v) seed was detected to be optimal for cell biomass and lipid production. The results demonstrated C. curvatus could effectively utilize most of the dominant monosaccharides and cellobiose existing in lignocellulosic biomass hydrolysate in the presence of toxic compounds.  相似文献   

17.
An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079T). H. saccincola A7 (= JCM 31827 = DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum growth of A7 was at alkaline pH (9.0) and 55 °C, compared to pH 7.0 at 60 °C for GGR1, and the fatty acid profile of A7 contained 1.7-times more C17:0 iso than GGR1. The draft genome sequence revealed that H. saccincola A7 possessed a cellulosome-like extracellular macromolecular complex, which has also been found for Clostridium thermocellum and C. clariflavum. H. saccincola A7 contained more glycoside hydrolases (GHs) belonging to GH families-11 and -2, and more diversity of xylanolytic enzymes, than C. thermocellum and C. clariflavum. H. saccincola A7 could grow on xylan because it encoded essential genes for xylose metabolism, such as a xylose transporter, xylose isomerase, xylulokinase, and ribulose-phosphate 3-epimerase, which are absent from C. thermocellum. These results indicated that H. saccincola A7 has great potential as a microorganism that can effectively degrade lignocellulosic biomass.  相似文献   

18.
《Process Biochemistry》2014,49(1):25-32
The compound 1,2,4-butanetriol (BT) is a valuable chemical used in the production of plasticizers, polymers, cationic lipids and other medical applications, and is conventionally produced via hydrogenation of malate. In this report, BT is biosynthesized by an engineered Escherichia coli from d-xylose. The pathway: d-xylose  d-xylonate  2-keto-3-deoxy-d-xylonate  3,4-dihydroxybutanal  BT, was constructed in E. coli by recruiting a xylose dehydrogenase and a keto acid decarboxylase from Caulobacter crescentus and Pseudomonas putida, respectively. Authentic BT was detected from cultures of the engineered strain. Further improvement on the strain was performed by blocking the native d-xylose and d-xylonate metabolic pathways which involves disruption of xylAB, yjhH and yagE genes in the host chromosome. The final construct produced 0.88 g L−1 BT from 10 g L−1 d-xylose with a molar yield of 12.82%. By far, this is the first report on the direct production of BT from d-xylose by a single microbial host. This may serve as a starting point for further metabolic engineering works to increase the titer of BT toward industrial scale viability.  相似文献   

19.
The thermophilic anaerobe Thermoanaerobacterium saccharolyticum JW/SL-YS485 was investigated as a host for n-butanol production. A systematic approach was taken to demonstrate functionality of heterologous components of the clostridial n-butanol pathway via gene expression and enzymatic activity assays in this organism. Subsequently, integration of the entire pathway in the wild-type strain resulted in n-butanol production of 0.85 g/L from 10 g/L xylose, corresponding to 21% of the theoretical maximum yield. We were unable to integrate the n-butanol pathway in strains lacking the ability to produce acetate, despite the theoretical overall redox neutrality of n-butanol formation. However, integration of the n-butanol pathway in lactate deficient strains resulted in n-butanol production of 1.05 g/L from 10 g/L xylose, corresponding to 26% of the theoretical maximum.  相似文献   

20.
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP+-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号