首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Although anthropogenic nitrogen (N) enrichment has significantly changed the growth, survival and reproduction of herbivorous insects, its effects on the defensive sequestration of secondary chemicals by insect herbivores are less well understood. Previous studies have shown that soil nutrient availability can affect sequestration directly through changing concentrations of plant defence chemicals, or indirectly through altering growth rates of herbivores. There has been less exploration of how nutrient deposition affects the consumption of secondary chemicals and subsequent sequestration efficiency. In the current study, the overall effect of soil N availability on cardenolide sequestration by the monarch caterpillar Danaus plexippus was examined. Specifically, the effects of soil nutrient availability on growth, consumption, excretion and sequestration efficiency of cardenolides by D. plexippus larvae fed on the tropical milkweed Asclepias curassavica were measured. 2. The results showed that soil N and phosphorus (P) fertilisation significantly reduced caterpillar growth rate and the sequestration efficiency of cardenolides by monarch caterpillars feeding on A. curassavica. The lowered sequestration efficiency was accompanied by higher concentrations of cardenolides in frass. Although the total cardenolide contents of caterpillars were lower under high N or P fertilisation levels, caterpillar cardenolide concentrations were constant across fertilisation treatments because of lower growth rates (and therefore lower body mass) under high fertilisation. It is concluded that anthropogenic N deposition may have multiple effects on insect herbivores, including their ability to defend themselves from predators with sequestered plant defences.  相似文献   

2.
Tannins in plant-herbivore interactions   总被引:2,自引:0,他引:2  
Tannins are the most abundant secondary metabolites made by plants, commonly ranging from 5% to 10% dry weight of tree leaves. Tannins can defend leaves against insect herbivores by deterrence and/or toxicity. Contrary to early theories, tannins have no effect on protein digestion in insect herbivores. By contrast, in vertebrate herbivores tannins can decrease protein digestion. Tannins are especially prone to oxidize in insects with high pH guts, forming semiquinone radicals and quinones, as well as other reactive oxygen species. Tannin toxicity in insects is thought to result from the production of high levels of reactive oxygen species. Tannin structure has an important effect on biochemical activity. Ellagitannins oxidize much more readily than do gallotannins, which are more oxidatively active than most condensed tannins. The ability of insects to tolerate ingested tannins comes from a variety of biochemical and physical defenses in their guts, including surfactants, high pH, antioxidants, and a protective peritrophic envelope that lines the midgut. Most work on the ecological roles of tannins has been correlative, e.g., searching for negative associations between tannins and insect performance. A greater emphasis on manipulative experiments that control tannin levels is required to make further progress on the defensive functions of tannins. Recent advances in the use of molecular methods has permitted the production of tannin-overproducing transgenic plants and a better understanding of tannin biosynthetic pathways. Many research areas remain in need of further work, including the effects of different tannin types on different types of insects (e.g., caterpillars, grasshoppers, sap-sucking insects).  相似文献   

3.
Aims Elevated CO2 and increased N availability can alter a variety of plant physiological processes leading to changes in the nutritional quality of leaf tissue for herbivores. Numerous experiments have examined the responses of herbivores to environmental change; however the potential effects of simultaneous change in multiple factors on leaf-chewing insect herbivores are less well understood. The plant-mediated effects of elevated CO2 and high N on the performance of a generalist leaf-chewing insect herbivore, Trichoplusia ni, were investigated.Methods Newly hatched T. ni larvae were introduced to Amaranthus viridis and Polygonum persicaria plants grown under ambient and elevated CO2 and low and high N conditions. Insect performance was assessed by measuring larvae weight after ten days of feeding. Plant photosynthesis, biomass, leaf area and specific leaf weight were measured to determine the effects of elevated CO2, N and insect feeding on plant performance.Important findings Elevated CO2 did not have strong effects on plant or insect performance, only affecting a few responses under low or high N conditions, but not both. Growth under high nitrogen improved almost all measures of plant performance. Trichoplusia ni performed significantly better on Amaranthus viridis (C 4) compared to Polygonum persicaria (C 3), despite similar leaf C:N ratios in both species. The performance of T. ni caterpillars was only improved by the high nitrogen treatment when they were feeding on P. persicaria, the host they performed poorly on. The only interactions between N and CO2 affecting plant performance were seen for leaf photosynthesis of P. persicaria and leaf area of A. viridis. Contrary to the predictions, there were no significant CO2 by N interactions affecting T. ni performance.  相似文献   

4.
Summary The behaviour of some young conifers and broadleaves on a very acid sandy humuspodzol soil was studied in pot trials. Species differed considerably in foliar copper concentration, reaction to N fertilization and development of Cu deficiency symptoms. Foliar copper concentrations were highest for the broadleaves (esp. oak and beech), and was increased by Cu and N fertilization, the last reaction showing an optimum curve. Cu deficiency symptoms could easily be induced in the conifers but not in the broadleaves.  相似文献   

5.
We explored tree species diversity effects on soil C stock, C/N ratio, and pH as compared with effects of tree species identity. We sampled forest floors and mineral soil (0–40 cm) in a diversity gradient of 1–5 tree species composed of conifers and broadleaves in Bia?owie?a Forest, Poland. Diversity was a weaker driver than identity of soil C stocks, C/N ratio, and pH in the soil profile. However, there were significant non-additive effects of diversity and significant effects of identity on C stock and C/N ratio within different parts of the soil profile. More diverse forests had higher C stocks and C/N ratios in the 20–40 cm layer, whereas identity in terms of conifer proportion increased C stocks and C/N ratios only in forest floors. A positive relationship between C stocks and root biomass in the 30–40 cm layer suggested that belowground niche complementarity could be a driving mechanism for higher root carbon input and in turn a deeper distribution of C in diverse forests. Diversity and identity affected soil pH in topsoil with positive and negative impacts, respectively. More diverse forests would lead to higher soil nutrient status as reflected by higher topsoil pH, but there was a slight negative effect on N status as indicated by higher C/N ratios in the deeper layers. We conclude that tree species diversity increases soil C stocks and nutrient status to some extent, but tree species identity is a stronger driver of the studied soil properties, particularly in the topsoil.  相似文献   

6.
Tree diversity is an important driver of forest ecosystem functioning, hypothesised to enhance tree growth and resistance to herbivores. To test this, we assessed the relative importance of tree species richness and functional diversity on tree height growth and insect herbivore damage across three tree diversity experiments in Finland, France and Germany, established within the last fifteen years. These experiments encompass species richness gradients from monocultures up to five species mixtures, with compositions drawn from a pool of eleven tree species. Tree height growth and total insect herbivory were evaluated at both the tree species and forest plot scales. Trees in mixtures tended to grow taller, but on average received more insect herbivory relative to monocultures. Gradients of tree species richness or functional diversity had only weak impact on the magnitude of these effects. Community weighted means of specific leaf area alone captured diversity effects on tree height growth, with stronger positive effects of diversity in mixtures with high community SLA. Tree species‐specific responses were highly variable. No species significantly benefited both in terms of increased growth and reduced herbivory when grown in mixtures. More species showed positive height growth responses in mixed assemblages, but only the two exotic conifers experienced associational resistance to herbivores. This large‐scale study shows that tree height growth in young forest plantations tends to be higher in species mixtures than in monocultures, but incremental increases in functional diversity have, at best, weak marginal growth benefits. Moreover, there appear to be contrasting effects at forest plot versus individual species scales. Thus, while some species show lower herbivore damage in mixtures, this is not a consistent trend and contrasts the higher overall damage in mixtures observed at the forest plot scale. To improve both tree growth and resistance to herbivores in tree species mixtures seems therefore challenging.  相似文献   

7.
Winter browsing by mammalian herbivores is known to induce a variety of morphological and physiological changes in plants. Browsing has been suggested to decrease the carbohydrate reserves in woody plants, which might lead to reduced tannin production in leaves during the following summer, and consequently, to increased herbivore damage on leaves. We conducted a clipping experiment with mature mountain birch trees and measured the effects of clipping on birch growth, leaf chemistry and toughness, as well as on the performance of insect herbivores. Leaves grew larger and heavier per unit area in the clipped ramets and had a higher content of proteins than leaves in the control trees. Clipping treatment did not affect the total content of sugars in the leaves (mg g?1), suggesting that a moderate level of clipping did not significantly reduce the carbohydrate pools of fully‐grown mountain birch trees. Furthermore, the contents of proanthocyanidins (condensed tannins) and gallotannins were slightly higher in the leaves of clipped ramets, contrary to the hypothesis of reduced tannin production. The effects of clipping treatment on leaf and shoot growth and on foliar chemistry were mainly restricted to the clipped ramets, without spreading to untreated ramets within the same tree individual. The effects of clipping on leaf characters varied during the growing season; for instance, leaf toughness in clipped ramets was higher than toughness in control trees and ramets only when leaves were mature. Accordingly, clipping had inconsistent effects on insect herbivores feeding at different times of the growing season. The generally small impact of clipping on herbivore performance suggests that the low intensity of natural browsing at the study area, simulated by our clipping treatment, does not have strong consequences for the population dynamics of insect herbivores on mountain birch via enhanced population growth caused by browsing‐induced changes in food quality.  相似文献   

8.
植物源昆虫拒食活性物质的研究和应用   总被引:12,自引:0,他引:12  
植物在与昆虫协调进化过程中形成了许多具有防御功能的次生代谢物质。作者对近年来植物源昆虫拒食活性物质的研究和应用进行了综述,其结构类型主要涉及萜类、生物碱类、酚类等,讨论了制约植物源昆虫拒食剂发展的因素并展望了植物源昆虫拒食剂在未来害虫综合治理中的作用。  相似文献   

9.
Summary Garrigue plant species growing on a calcareous substrate in southern France had higher foliar N levels than the same species growing on a relatively lower nutrient siliceous substrate (maquis). However maquis species had significantly higher foliar levels of P, more water, higher phenolic concentrations and larger leaf areas. The cumulative amount of insect damage on garrigue and maquis plants was similar, presumably due to different nutritional advantages in each case. Soil fertilization signifincantly elevated N levels in Q. coccifera, increased total leaf areas, decreased condensed tannin levels, and these leaves showed significantly more insect damage. Some effects of burning on Q. coccifera are also described. In these shrublands, fertilization may render leaf material more nutritional for herbivores by increasing nitrogen content and decreasing condensed tannin concentration, although very heavy grazing pressure may increase levels of leaf phenolics.  相似文献   

10.
Forest reserves can serve as an opportunity for studying natural processes in the wild. We studied the effect of easy-to-see tree level indicators on saproxylic beetles (Coleoptera), using window traps. Our study was conducted in old-growth mountainous spruce–beech forest Bukacka in the Orlicke Mts. (Czech Republic). Our analyses showed that the species composition of the study group and its response to tree level indicators in the relatively homogenous environment of old-growth mountainous forest area could be explained reasonably well through variance partitioning. The results indicated that the decay stage was the category hosting the highest level of explained variance with respect to saproxylics, followed by diameter and tree. Red-listed beetle species were nearly the same associated with conifers and broadleaves. Our results highlighted the desirability of using tree level indicators to assess insect diversity, using window traps on tree trunk.  相似文献   

11.
Joanne L.Denyer  S. E.Hartley  E. A.John 《Oikos》2007,116(7):1186-1192
Nutrient inputs to plant communities are often spatially heterogeneous, for example those deriving from the dung and urine of large grazing animals. The effect of such localised elevation of nutrients on plant growth and composition has been shown to be modified by the grazing of large herbivores. However, there has been little work on interactions between small mammalian herbivores and such patchy nutrient inputs, even though these interactions are potentially of major significance for plant performance and community structure.
We examined the effect of simulated cattle urine deposition on the vegetation structure, above-ground biomass and species composition of chalk grassland within enriched patches. Short-term exclosures were used to determine whether a small herbivore (rabbit) would preferentially graze the vegetation in enriched patches and what impact this interaction would have on the performance of plants in such patches. Rabbit grazing pressure determined whether nutrient inputs had a negative or positive effect on plant biomass. Nutrients increased plant biomass in the absence of grazing, but when exposed to grazing, plants in nutrient-rich patches had more biomass consumed by herbivores than neighbouring plants. Further, nutrients increased the relative palatability of a less preferred forage species ( Brachypodium pinnatum ), contributing to changes in plant community composition. We conclude that a small herbivore can drive plant responses to patchily distributed nutrients.  相似文献   

12.
Many insect pests utilize plant volatiles for host location and untangling the mechanisms of this process can provide tools for pest management. Numerous experimental results have been published on the effect of plant volatiles on insect pests. We used a meta‐analysis to summarize this knowledge and to look for patterns. Our goal was to identify herbivore and plant traits that might explain the herbivores’ behavioral response to plant volatiles in field applications. We scored a total of 374 unique plant volatile‐insect herbivore interactions obtained from 34 published studies investigating 50 herbivore pest species. Attractants had a significant effect on insect herbivore abundance but repellents did not; this latter result could be a result of the comparatively small number of field studies that tested plant volatiles as repellents (3%). Females were significantly more attracted to plant volatile baits than males. The diet breadth of herbivores was independent of a behavioral response to plant volatiles, but more case studies show effects of volatiles on chewers, followed by wood‐borers and sap‐feeders. There are more demonstrations of attraction to plant volatiles in Lepidoptera than in Thysanoptera. The method of plant volatile application had a significant effect on herbivore abundance and increasing the number of chemicals in individual baits attracted more herbivores. The magnitude of the response of herbivores to plant volatiles in forest and agricultural habitats was similar. We explore consistent patterns and highlight areas needing research in using plant volatiles to manage insect pests.  相似文献   

13.
1. Elevated allochthonous inputs of nutrients and sediments to aquatic ecosystems are associated with eutrophication and sedimentation. Reservoirs receive substantial subsidies of nutrients and sediments from catchments due to their large catchment : lake area ratios. We examined the effect of elevated subsidies of sediments and/or dissolved nutrients on the success (survival, growth, biomass and condition factor) of larval gizzard shad (Dorosoma cepedianum), a widespread and dominant omnivorous fish in reservoir ecosystems. 2. We simulated allochthonous agricultural subsides by manipulating dissolved nutrients and sediment inputs in a 2 × 2 factorial design in experimental mesocosms. We predicted that larval fish success would be greater under elevated nutrients. However, we propose two alternative hypotheses with respect to the overall effect of allochthonous sediment inputs. If sediment inputs negatively affect larval gizzard feeding success, larval success would be highest when only nutrients are added and lowest when only sediments are added (+N > +N+S ≥ C > +S). If high turbidity enhances larval foraging activity (due to greater contrast between prey and background), we predict that larval success would be highest when both subsidy types (nutrients and sediment) are elevated, intermediate when either nutrients or sediments are added and the lowest when no subsidies are added (+N+S > +N ≥ +S > C). 3. Our results indicate that elevated nutrient and sediment conditions enhanced larval gizzard shad biomass, but the overall nutrient addition effect was greater than the sediment addition effect (+N ~ +N+S > +S > C). We observed differential effects of nutrient and sediment inputs on larval survival, growth and condition factors. 4. The enhancement of fish biomass in elevated nutrients (+N, +N+S) relative to control conditions was associated with improved gizzard shad survival and not greater growth. The enhancement of fish biomass in the elevated sediment treatment (+S) relative to the control conditions was caused by an increase in survival that more than compensated for a negative effect of sediment addition on growth. 5. Our findings support the recommendation that reservoir management practices must consider the links between land use practices and food web dynamics. Our results suggest that reduction of subsidies of nutrients and sediments to productive reservoirs would decrease survival of larval gizzard shad due to lower food availability.  相似文献   

14.
Exposure of R. crispus and R. obtusifolius to elevated CO2 (600 ppm) resulted in an increased C:N ratio of leaf tissue and greater leaf areas. Larvae of P. nigritarsis mining leaves of R. obtusifolius during exposure produced significantly bigger mines in elevated than in ambient (350 ppm) conditions. There were no significant treatment effects on pupal weight although in both host species mean weight was greater in ambient than in elevated conditions. These results are consistent with the hypothesis that insect herbivores compensate for increased C:N ratios by increased food consumption. This response by herbivores may partially offset predicted increases in plant biomass in a future high CO2 environment.  相似文献   

15.
Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in analysis combining both groups. Thus, a fundamental mass-based relationship between photosynthesis, nitrogen, and leaf structure reported previously also exists in a dataset combining within-crown and across-functional type variation.  相似文献   

16.
Insects select their hosts, but trees cannot select which herbivores will feed upon them. Thus, as long-lived stationary organisms, conifers must resist the onslaught of varying and multiple attackers over their lifetime. Arguably, the greatest threats to conifers are herbivorous insects and their associated pathogens. Insects such as bark beetles, stem- and wood-boring insects, shoot-feeding weevils, and foliage-feeding budworms and sawflies are among the most devastating pests of conifer forests. Conifer trees produce a great diversity of compounds, such as an enormous array of terpenoids and phenolics, that may impart resistance to a variety of herbivores and microorganisms. Insects have evolved to specialize in resistance to these chemicals -- choosing, feeding upon, and colonizing hosts they perceive to be best suited to reproduction. This review focuses on the plant-insect interactions mediated by conifer-produced terpenoids. To understand the role of terpenoids in conifer-insect interactions, we must understand how conifers produce the wide diversity of terpenoids, as well as understand how these specific compounds affect insect behaviour and physiology. This review examines what chemicals are produced, the genes and proteins involved in their biosynthesis, how they work, and how they are regulated. It also examines how insects and their associated pathogens interact with, elicit, and are affected by conifer-produced terpenoids.  相似文献   

17.
There are gaps in our understanding of plant responses under different insect phytophagy modes and their subsequent effects on the insect herbivores’ performance at late season. Here we compared different types of insect feeding by an aphid, Lipaphis erysimi, and a lepidopteran, Plutella xylostella, and how this affected defensive metabolites in leaves of 2 Brassica species when plants gain maturity. Thiocyanate concentrations after P. xylostella and L. erysimi feeding activities were the same. Total phenolics was higher after the phloem feeder feeding than the folivore activity. The plants compensatory responses (i.e., tolerance) to L. erysimi feeding was significantly higher than the responses to P. xylostella. This study showed that L. erysimi had higher carbon than P. xylostella whereas nitrogen in P. xylostella was 1.42 times that in L. erysimi. Population size of the phloem feeder was not affected by plant species or insect coexistence. However, there was no correlation between plant defensive metabolites and both insects’ population size and biomass. This suggests that plant root biomass and tolerance index after different insect herbivory modes are not necessarily unidirectional. Importantly, the interaction between the folivore and the phloem feeder insects is asymmetric and the phloem feeder might be a trickier problem for plants than the folivore. Moreover, as both plants’ common and special defenses decreased under interspecific interference, we suggest that specialist insect herbivores can be more challenged in ecosystems in which plants are not involved in interspecific interference.  相似文献   

18.
Abstract Plant allocation to defensive compounds by elevated CO2‐grown non‐transgenic and transgenic Bt cotton in response to infestation by cotton aphid, Aphis gossypii (Glover) in open‐top chambers under elevated CO2 were studied. The results showed that significantly lower foliar nitrogen concentration and Bt toxin protein occurred in transgenic Bt cotton with and without cotton aphid infestation under elevated CO2. However, significantly higher carbon/nitrogen ratio, condensed tannin and gossypol were observed in transgenic Bt cotton “GK‐12” and non‐transgenic Bt cotton ‘Simian‐3’ under elevated CO2. The CO2 level and cotton variety significantly influenced the foliar nitrogen, condensed tannin and gossypol concentrations in the plant leaves after feeding by A. gossypii. The interaction between CO2 level × infestation time (24 h, 48 h and 72 h) showed a significant increase in cotton condensed tannin concentrations, while the interaction between CO2 level × cotton variety significantly decreased the true choline esterase (TChE) concentration in the body of A. gossypi. This study exemplified the complexities of predicting how transgenic and non‐transgenic plants will allocate defensive compounds in response to herbivorous insects under differing climatic conditions. Plant defensive compound allocation patterns and aphid enzyme changes observed in this study appear to be broadly applicable across a range of plant and herbivorous insect interactions as CO2 atmosphere rises.  相似文献   

19.
Industrialisation has elevated atmospheric levels of CO2 from original 280 ppm to current levels at 400 ppm, which is estimated to double by 2050. Although high atmospheric CO2 levels affect insect interactions with host plants, the impact of global change on plant defences in response to insect attack is not completely understood. Recent studies have made advances in elucidating the mechanisms of the effects of high CO2 levels in plant–insect interactions. New studies have proposed that gene regulation and phytohormones regulate resource allocation from photosynthesis to plant defences against insects. Biochemical and molecular studies demonstrated that both defensive hormones jasmonic acid (JA) and ethylene (ET) participate in modulating chemical defences against herbivores in plants grown under elevated CO2 atmosphere rather than changes in C:N ratio. High atmospheric CO2 levels increase vulnerability to insect damage by down‐regulating both inducive and constitutive chemical defences regulated by JA and ET. However, elevated CO2 levels increase the JA antagonistic hormone salicylic acid that increases other chemical defences. How plants grown under elevated CO2 environment allocate primary metabolites from photosynthesis to secondary metabolism would help to understand innate defences and prevent future herbivory in field crops. We present evidence demonstrating that changes in chemical defences in plants grown under elevated CO2 environment are hormonal regulated and reject the C:N hypothesis. In addition, we discuss current knowledge of the mechanisms that regulate plants defences against insects in elevated CO2 atmospheres.  相似文献   

20.
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO2), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root‐feeding insects to eCO2 are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO2 conditions are largely unexplored for root herbivore interactions. This study investigated how eCO2 (700 μmol mol?1) affected a root‐feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root‐feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO2. Root biomass decreased by 16% in eCO2, which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO2 on root C and N concentrations. Weevils caused a sink in plants, resulting in 8–12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO2 and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO2, suggestive of defensive response, but caused a decrease under eCO2. Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root‐growth underpinned the negative effects of eCO2 on vine weevils and speculate that the plant's failure to mount a defensive response at eCO2 may have intensified these negative effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号