首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most promising alternatives to petroleum for the production of fuels and chemicals is bio-oil based chemistry. Microbial oils are gaining importance because they can be engineered to accumulate lipids enriched in desired fatty acids. These specific lipids are closer to the commercialized product, therefore reducing pollutants and costly chemical steps. Yarrowia lipolytica is the most widely studied and engineered oleaginous yeast. Different molecular and bioinformatics tools permit systems metabolic engineering strategies in this yeast, which can produce usual and unusual fatty acids. Usual fatty acids, those usually found in triacylglycerol, accumulate through the action of several pathways, such as fatty acid/triacylglycerol synthesis, transport and degradation. Unusual fatty acids are enzymatic modifications of usual fatty acids to produce compounds that are not naturally synthetized in the host. Recently, the metabolic engineering of microorganisms has produced different unusual fatty acids, such as building block ricinoleic acid and nutraceuticals such as conjugated linoleic acid or polyunsaturated fatty acids. Additionally, microbial sources are preferred hosts for the production of fatty acid-derived compounds such as γ-decalactone, hexanal and dicarboxylic acids. The variety of lipids produced by oleaginous microorganisms is expected to rise in the coming years to cope with the increasing demand.  相似文献   

2.
加快微生物油脂研究为生物柴油产业提供廉价原料   总被引:46,自引:5,他引:46  
当前国内外致力于发展生物柴油,因其性能优良,成为化石柴油的替代品。由于以植物油脂生产生物柴油原料成本占总成本的70%-85%,所以亟待开发廉价油脂资源。微生物油脂主要是微生物利用碳水化合物合成的甘油脂,其脂肪酸组成和植物油相近。产油微生物具有资源丰富、油脂含量高、碳源利用谱广等特点,开发潜力大。然而,目前微生物油脂生产成本偏高,研究工作仍以富含多不饱和脂肪酸的高附加值菌油为目标。随着现代分子生物学和生物化工技术的发展,对产油微生物菌种筛选、改良、代谢调控和发酵工程的研究日趋深入,将降低微生物油脂生产成本,为未来生物柴油产业提供廉价原料。  相似文献   

3.
Yarrowia lipolytica is a biotechnological chassis for the production of a range of products, such as microbial oils and organic acids. However, it is unable to consume xylose, the major pentose in lignocellulosic hydrolysates, which are considered a preferred carbon source for bioprocesses due to their low cost, wide abundance and high sugar content.Here, we engineered Y. lipolytica to metabolize xylose to produce lipids or citric acid. The overexpression of xylose reductase and xylitol dehydrogenase from Scheffersomyces stipitis were necessary but not sufficient to permit growth. The additional overexpression of the endogenous xylulokinase enabled identical growth as the wild type strain in glucose. This mutant was able to produce up to 80 g/L of citric acid from xylose. Transferring these modifications to a lipid-overproducing strain boosted the production of lipids from xylose. This is the first step towards a consolidated bioprocess to produce chemicals and fuels from lignocellulosic materials.  相似文献   

4.
The addition of plant oils to the growth medium stimulated growth and lipid synthesis in the fungus Blakeslea trispora. However, only oils with high content of linoleic and especially linolenic acid enhanced lycopene formation. The increase in lycopene formation was accompanied by accumulation in the neutral lipid fraction of the fatty acids prevailing in plant oils. In contrast, the influence of exogenous lipids on the fatty acid composition of bulk fungal phospholipids was insignificant. Nonetheless, a marked increase in the content of membrane lipids and of their phosphatidylethanolamine content was revealed. Presumably, the main mechanism of stimulation of lycopene formation by the oils involves an increase in the solubility of lycopene in the triacylglycerols of the lipid bodies, which is due to an increase in the desaturation degree of their fatty acids. The predominance of linoleic and especially of linolenic fatty acid in plant oils is regarded as a criterion for selecting the oil species for the purpose of intensifying lycopene synthesis.  相似文献   

5.
Microbial lipids produced by oleaginous microorganisms, also called microbial oils and single cell oils (SCOs), are very promising sources for several oil industries. The exploration of efficient oleaginous yeast strains, meant to produce both high-quantity and high-quality lipids for the production of biodiesel, oleochemicals, and the other high value lipid products, have gained much attention. At present, the number of oleaginous yeast species that have been discovered is 8.2% of the total number of known yeast species, most of which have been isolated from their natural habitats. To explore high lipid producing yeasts, different methods, including high-throughput screening methods using colorimetric or fluorometric measures, have been developed. Understanding of the fatty acid composition profiles of lipids produced by oleaginous yeasts would help to define target lipid-related products. For lipid production, the employment of low-cost substrates suitable for yeast growth and lipid accumulation, and efficient cultivation processes are key factors for successfully increasing the amount of the accumulated lipid yield while decreasing the cost of production.  相似文献   

6.
Microbially produced lipids like triacylglycerols or fatty acid ethyl esters are currently of great interest as fuel replacements or other industrially relevant compounds. They can even be produced by non-oleaginous microbes, like Escherichia coli, upon metabolic engineering. However, there is still much room for improvement regarding the yield for a competitive microbial production of lipids or biofuels. We genetically engineered E. coli by expressing fadD, fadR, pgpB, plsB and ‘tesA in combination with atfA from Acinetobacter baylyi. A total fatty acid contents of up to 16% (w/w) was obtained on complex media, corresponding to approximately 9% (w/w) triacylglycerols and representing the highest titers of fatty acids and triacylglycerols obtained in E. coli under comparable cultivation conditions, so far. To evaluate further possibilities for an optimization of lipid production, ten promising bacterial wax ester synthase/acyl-Coenzyme A:diacylglycerol acyltransferases were tested and compared. While highest triacylglycerol storage was achieved with AtfA, the mutated variant AtfA-G355I turned out to be most suitable for fatty acid ethyl ester biosynthesis and enabled an accumulation of approx. 500 mg/L without external ethanol supplementation.  相似文献   

7.
Biodiesel consists of fatty acids short chain alkyl esters produced through transesterification and esterification of fats and oils. Production of biodiesel is strongly affected by the purity of raw lipids, and catalysts play important role in these processes. Although direct utilization of impure feedstocks is more economical, their use necessitates development of effective catalysts to overcome hindering influences of impurities. In this study, sulfuryl chloride, thionyl chloride, acetyl chloride, p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, dimethylsulfate and sulfuric acid were investigated as catalysts for the production of biodiesel because acids have higher tolerance to water and free fatty acids in oils and can simultaneously catalyze both the esterification and transesterification reactions. Sulfuryl chloride was found to be an effective catalyst for production of biodiesel from soybean oil, its waste oil and microalgal lipids.  相似文献   

8.
The fatty acid composition of animal products (eggs, milk and meat) is the reflect of both the tissue fatty acid biosynthesis and the fatty acid composition of ingested lipids. This relationship is stronger in monogastrics (pigs, poultry and rabbits) than in ruminants, where dietary fatty acids are hydrogenated in the rumen. There is an increasing recognition of the health benefits of polyunsaturated fatty acids (PUFA), because these fatty acids are essential for humans. In addition, the ratio n-6/n-3 fatty acids in the human diet is important. This ratio by far exceeds the recommended value of 5. Therefore, inclusion of fish meals, or n-3 PUFA rich oils, or linseed in animal diets is a valid means of meeting consumer demand for animal products that are nutritionally beneficial.The studies that are undertaken on animals mainly use diets supplemented with linseed, as a source of n-3 fatty acids. The use of linseed diets generally leads to an increased n-3 fatty acid content in animal products (egg, meat, milk) in ruminants and monogastrics. Recent studies have also demonstrated that neither the processing nor the cooking affects the PUFA content of pork meat or meat products.The ability of unsaturated fatty acids, especially those with more than two double bonds, to rapidly oxidise, is important in regulating the shelf life of animal products (rancidity and colour deterioration); however, a good way to avoid such problems is to use antioxidant products (such as vitamin E) in the diet.Some studies also show that it is not necessary to feed animals with linseed-supplemented diets for a long time to have the highest increase in PUFA content of the products. So, short-term diet manipulation can be a practical reality for industry.As the market for n-3 PUFA enriched products is today limited in most countries, other studies must be undertaken to develop this kind of production.  相似文献   

9.
In this work, 12 different yeast strains were evaluated to gauge their ability to accumulate lipids using raw glycerol as the main carbon source. Lipomyces lipofer NRRL Y-1155 stood out above the other strains, achieving 9.48 g/l biomass, 57.64 % lipid content and 5.46 g/l lipid production. The fatty acid profile was similar to vegetable oils commonly used in the synthesis of biodiesel, with the predominance of polyunsaturated acids, especially linoleic acid, reaching 68.3 % for Rhodotorula glutinis NRRL YB-252. The occurrence of palmitic acid (39.3 % for Lipomyces starkeyi NRRL Y-11557) was also notable. Thus, yeast biomass with high lipid content can be a sustainable and renewable alternative as a raw material for the biodiesel industry.  相似文献   

10.
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end‐uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild‐type, cgi‐58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High‐leaf‐oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co‐expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant–pest interactions are discussed.  相似文献   

11.
新型可再生工业用油脂的代谢工程   总被引:2,自引:0,他引:2  
植物种子油是一种可再生资源,亦用作生物燃油和化学工业原料. 一些野生植物能高水平合成积累羟化、环氧化和共轭脂肪酸等具有重要工业应用价值的特异脂肪酸.催化这些特异脂肪酸合成的酶主要是类脂肪酸去胞和酶2(类FAD2). 由特异脂肪酸合成到三酰基甘油脂 (TAG) 形成还需要酰基转移酶 (如DGAT) 的参与. 在油料作物种子中表达类FAD2酶及其相关基因(如DGAT),已培育出了能合成积累一定含量特异脂肪酸的工程油料品系,为基于农作物生产高附加值工业用油脂开辟了新途径. 本文论述了参与特异脂肪酸生物合成途径的关键酶基因、油料作物代谢工程策略,以及应用工程油料作物大规模生产重要工业用脂肪酸的研究进展、存在问题和应用前景等.  相似文献   

12.
Vegetable oils promoted mycelial growth ofVolvariella volvacea. Ethyl esters of major components of saponified fatty acids (palmitic, stearic, oleic and linoleic acid) from vegetable oils were stimulatory. The stimulatory effect of these fatty acids varied with concentration and degree of unsaturation; relatively high concentrations being inhibitory. Mycelial growth appears to be promoted by low concentrations of fatty acids. Supplementation of growth medium with sunflower oil altered membrane permeability and this resulted in an increased uptake of glucose. The total mycelial lipids accounted for only 30% of consumed lipids, the remainder being metabolized. The failure of the fungus to adjust the degree of unsaturation in membrane lipids when it was transferred to 0°C may partially explain its susceptibility to chilling injury.  相似文献   

13.
Behavior of lipids in biological wastewater treatment processes   总被引:2,自引:0,他引:2  
Lipids (characterized as oils, greases, fats and long-chain fatty acids) are important organic components of wastewater. Their amount, for example, in municipal wastewater is approximately 30–40% of the total chemical oxygen demand. The concern over the behavior of lipids in biological treatment systems has led to many studies, which have evaluated their removal, but still the exact behavior of lipids in these processes is not well understood. In this review, we discuss the current knowledge of how lipids/fatty acids affect both aerobic and anaerobic processes and specific methods that have been used in an attempt to enhance their removal from wastewater. Overall, the literature shows that lipids/fatty acids are readily removed by biological treatment methods, inhibitory to microbial growth as well as the cause of foaming, growth of filamentous bacteria and floc flotation.  相似文献   

14.
广谱碳源产油酵母菌的筛选   总被引:16,自引:1,他引:16  
对10株酵母菌利用不同单糖为碳源条件下菌体内积累油脂的能力进行了初步考察,并对菌油进行了分离和脂肪酸组成分析。实验发现,以葡萄糖为唯一碳源时有9株菌油脂含量超过自身细胞干重的20%,可以界定为产油微生物。其中6#菌(T.cutaneumAS2.571)利用葡萄糖发酵菌体油脂含量达到65%(W/W)。所有实验菌株都能同化多种单糖,其中1#菌(L.starkeyiAS2.1390)、4#菌(R.toruloidesAS2.1389)和11#菌(L.starkeyiAS2.1608)表现出对碳源利用的广谱性,能转化五碳糖木糖和阿拉伯糖并在菌体内积累油脂,油脂含量最高达到26%。脂肪酸组成分析结果表明,菌油富含饱和及低度不饱和长链脂肪酸,其中棕榈酸、油酸和亚油酸三者之和占总脂肪酸组成的90%以上,脂肪酸组成分布类似于常见的植物油。这些结果对利用产油微生物转化木质纤维素水解混合糖获取油脂资源的研究具有重要意义。  相似文献   

15.
Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated ω-hydroxy fatty acids and α,ω-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.  相似文献   

16.
The interdependences between the structure of fatty acid and biofuel characteristics obtained from these fatty acids were briefly reviewed. The fatty acid compositions of the lipids of yeasts and phototrophic microorganisms were analyzed. The main parameters of the biodiesel (iodine value, cetane number, and kinematic viscosity) that can be made from the lipids of these microorganisms were calculated based on the data and compared to the current standards. The lipids of the yeast Rhodosporidium toruloides VKPM Y-3349 were shown to be the most suitable for biofuel production due to the composition and content of fatty acid. The possibilities of a decrease in the prime cost of microbial lipids (along with plant oils) that would make them competitive raw material for biofuel production were considered.  相似文献   

17.
During the past decade, there have been many optimistic claims concerning the potential of novel oil-based products from genetically engineered crops, particularly for the manufacture of a new generation of renewable, carbon-neutral, industrial materials. Such claims have been underpinned by an impressive series of scientific advances that have resulted in the isolation of genes encoding most of the enzymes directly involved in oil biosynthesis. In some cases, these enzymes have even been re-engineered by site-directed or random mutagenesis to allow production of new fatty acid profiles that are not present in any existing organism. This has opened up the prospect of engineering `designer oil crops' to produce novel fatty acids with chain lengths from C8 to C24 and with a wide range of industrially useful functionalities, including hydroxylation, epoxidation, and conjugated and non-conjugated double or triple bonds. However, there remain significant technical challenges before this promise of designer transgenic crops is likely to be translated into large-scale commercial reality. For example, it has proved surprisingly difficult to engineer high levels of novel fatty acids in genetically engineered transgenic plants, although many wild type seeds can readily accumulate 90–95% of a single fatty acid in their storage oil. Another complication is the recent discovery of multiple pathways of triacylglycerol biosynthesis and the difficulty in ensuring that novel fatty acids are only channelled towards storage triacylglycerols and not to membrane or signalling lipids in major target crops like rapeseed. New findings from our lab have suggested that there may also be problems with the tissue specificity of some of the `seed-specific' gene promoters that are commonly used in transgenic crops. There are also considerable and often underestimated challenges associated with the economics, management and public acceptability of all transgenic crops, even for non-food use. In most cases the projections of petroleum reserves over the next few decades make it unlikely that crop-derived commodity products that substitute for petroleum will be competitive. Also the scale of crop production required to generate millions of tonnes of commodity oils, e.g., for biodegradable plastics, is likely to seriously impinge on food production at a time of increasing global populations, and is therefore unlikely to be acceptable. An alternative strategy to transgenic oil crops is to use molecular breeding techniques in order to develop new crops that already synthesise high levels of novel fatty acids of interest. Finally, the most promising market sectors and product ranges for the future development of oil crop biotechnology will be discussed.  相似文献   

18.
Microbial biolipids/biodiesels derived from volatile fatty acids (VFAs) can be a valuable alternative to plant oils if optimum fermentation conditions are determined. VFAs were used for cell mass and microbial lipid production by Cryptococcus curvatus. The lipid content in the cells increased up to 48% and 28% in batch cultures with the use of 20 g/L glucose and 6 g/L of VFAs as the carbon source, respectively. In this study, C. curvatus used VFAs as a carbon source via anaerobic digestion of rice straw hydrolysates. VFAs produced from rice straw resulted in yield of 0.43 g VFAs/g substrate and 40% higher specific growth rate(0.305 h−1) than synthetic VFAs. The highest fatty acid composition observed was C18:1, was obtained using glucose and VFAs as the carbon source to yield a cetane number of 56–59, which is suitable for biodiesel production. The cost of microbial lipids was estimated to be 0.30–1.15 USD/L given 0–150 USD/ton of VFAs cost for a yield of 0.17 g/g of lipids. Thus, VFAs can be a suitable carbon source for economical biodiesel production.  相似文献   

19.
During analysis of components of baobab (Adansonia digitata) seed oil, several new fluorescent compounds were detected in HPLC chromatograms that were not found previously in any seed oils investigated so far. After preparative isolation of these compounds, structural analysis by NMR spectroscopy, UHPLC-HR-MS, GC-FID and spectroscopic methods were applied and allowed identification of these substances as series of N-acylserotonins containing saturated C22 to C26 fatty acids with minor contribution of C27 to C30 homologues. The main component was N-lignocerylserotonin and the content of odd carbon-atom-number fatty acids was unusually high among the homologues. The suggested structure of the investigated compounds was additionally confirmed by their chemical synthesis. Synthetic N-acylserotonins showed pronounced inhibition of membrane lipid peroxidation of liposomes prepared from chloroplast lipids, especially when the peroxidation was initiated by a water-soluble azo-initiator, AIPH. Comparative studies of the reaction rate constants of the N-acylserotonins and tocopherols with a stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in solvents of different polarity revealed that N-acylserotonins showed similar activity to δ-tocopherol in this respect. The described compounds have been not reported before either in plants or in animals. This indicates that we have identified a new class of plant lipids with antioxidant properties that could have promising pharmacological activities.  相似文献   

20.
Omega-3 fatty acids (ω3 FAs) have attracted attention because they have various health benefits for humans. Fish oils are currently major sources of ω3 FAs, but a sustainable supply of ω3 FAs based on fish oils is problematic because of the increasing demand. In this study, the production potential of a genetically engineered marine cyanobacterium, Synechococcus sp. strain NKBG 15041c, was examined as an alternative source of ω3 FAs. A change in fatty acid composition of this cyanobacterium was successfully induced by the expression of a heterologous Δ6-desaturase, and the transformants synthesized stearidonic acid, which the wild type cannot produce. As a result of optimization of culture conditions, maximal contents of stearidonic acid and total ω3 FAs reached 12.2 ± 2.4 and 118.1 ± 3.5 mg/g, respectively. The maximal ω3 FA productivity was 4.6 ± 0.7 mg/(L⋅day). These are the highest values of the contents of stearidonic acid and ω3 FAs in genetically engineered cyanobacteria reported thus far. Therefore, genetically engineered Synechococcus sp. strain NKBG 15041c may be a promising sustainable source of ω3 fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号