首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoclastic activity induces osteomodulin expression in osteoblasts   总被引:2,自引:0,他引:2  
Bone resorption by osteoclasts stimulates bone formation by osteoblasts. To isolate osteoblastic factors coupled with osteoclast activity, we performed microarray and cluster analysis of 8 tissues including bone, and found that among 10,490 genes, osteomodulin (OMD), an extracellular matrix keratan sulfate proteoglycan, was simultaneously induced with osteoclast-specific markers such as MMP9 and Acp5. OMD expression was detected in osteoblasts and upregulated during osteoblast maturation. OMD expression in osteoblasts was also detected immunohistochemically using a specific antibody against OMD. The immunoreactivity against OMD decreased in op/op mice, which lack functional macrophage colony stimulating factor (M-CSF) and are therefore defective in osteoclast formation, when compared to wild-type littermates. OMD expression in op/op mice was upregulated by M-CSF treatment. Since the M-CSF receptor c-Fms was not expressed in osteoblasts, it is likely that OMD is an osteoblast maturation marker that is induced by osteoclast activity.  相似文献   

2.
The aberrant activation of osteoblasts in the early stage is one of the critical steps during the pathogenesis of skeletal fluorosis. The endoplasmic reticulum (ER) stresses and unfolded protein response (UPR) are initiated to alleviate the accumulation of unfolded proteins against cell injury. The previous researches had demonstrated that fluoride induced ER stress in other cells or tissues. In this study, we determined the ER stress and UPR to investigate their roles in aberrant activation of fluoride-treated osteoblasts. The gene expression of bone markers and UPR factors in MC3T3-E1 cells treated with varying doses of fluoride administration was analyzed. Meantime, levels of glutathione and glutathione disulfide were tested by the ultraperformance liquid chromatography–tandem mass spectrometry applications. Our results indicated that a certain dose and period of fluoride administration induced cell proliferation and differentiation, and Runx2 was involved in the regulation of osteoblastic differentiation of MC3T3-E1 cells. Increase trend of Runx2 expression was consistent with change of marker of ER stress. Fluoride caused ER stress and stimulated UPR during the process of osteoblast maturation, while oxidative stress was also active in the occurrence of ER stress. These data indicated that ER stress and UPR were possibly involved in the action of fluoride on osteoblasts.  相似文献   

3.
4.
5.
Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Bone formation and density are decreased in T1-diabetic mice. Correspondingly, the number of TUNEL positive, dying osteoblasts increases in bones of T1-diabetic mice. Moreover, two known mediators of osteoblast death, TNFα and ROS, are increased in T1-diabetic bone. TNFα and oxidative stress are known to activate caspase-2, a factor involved in the extrinsic apoptotic pathway. Therefore, we investigated the requirement of caspase-2 for diabetes-induced osteoblast death and bone loss. Diabetes was induced in 16-week old C57BL/6 caspase-2 deficient mice and their wild type littermates and markers of osteoblast death, bone formation and resorption, and marrow adiposity were examined. Despite its involvement in extrinsic cell death, deficiency of caspase-2 did not prevent or reduce diabetes-induced osteoblast death as evidenced by a twofold increase in TUNEL positive osteoblasts in both mouse genotypes. Similarly, deficiency of caspase-2 did not prevent T1-diabetes induced bone loss in trabecular bone (BV/TV decreased by 30 and 50%, respectively) and cortical bone (decreased cortical thickness and area with increased marrow area). Interestingly, at this age, differences in bone parameters were not seen between genotypes. However, caspase-2 deficiency attenuated diabetes-induced bone marrow adiposity and adipocyte gene expression. Taken together, our data suggest that caspase-2 deficiency may play a role in promoting marrow adiposity under stress or disease conditions, but it is not required for T1-diabetes induced bone loss.  相似文献   

6.
7.
Type I diabetes increases an individual's risk for bone loss and fracture, predominantly through suppression of osteoblast activity (bone formation). During diabetes onset, levels of blood glucose and pro‐inflammatory cytokines (including tumor necrosis factor α (TNFα)) increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased chronically (i.e., 40 days later) at which point bone loss is clearly evident. We hypothesized that early bone marrow inflammation can promote osteoblast death and hence reduced osteoblast markers. Indeed, examination of type I diabetic mouse bones demonstrates a greater than twofold increase in osteoblast TUNEL staining and increased expression of pro‐apoptotic factors. Osteoblast death was amplified in both pharmacologic and spontaneous diabetic mouse models. Given the known signaling and inter‐relationships between marrow cells and osteoblasts, we examined the role of diabetic marrow in causing the osteoblast death. Co‐culture studies demonstrate that compared to control marrow cells, diabetic bone marrow cells increase osteoblast (MC3T3 and bone marrow derived) caspase 3 activity and the ratio of Bax/Bcl‐2 expression. Mouse blood glucose levels positively correlated with bone marrow induced osteoblast death and negatively correlated with osteocalcin expression in bone, suggesting a relationship between type I diabetes, bone marrow and osteoblast death. TNF expression was elevated in diabetic marrow (but not co‐cultured osteoblasts); therefore, we treated co‐cultures with TNFα neutralizing antibodies. The antibody protected osteoblasts from bone marrow induced death. Taken together, our findings implicate the bone marrow microenvironment and TNFα in mediating osteoblast death and contributing to type I diabetic bone loss. J. Cell. Physiol. 226: 477–483, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
HIV‐infected patients receiving antiretroviral therapy present an increased prevalence of age‐related comorbidities, including osteoporosis. HIV protease inhibitors (PIs) have been suspected to participate to bone loss, but the mechanisms involved are unknown. In endothelial cells, some PIs have been shown to induce the accumulation of farnesylated prelamin‐A, a biomarker of cell aging leading to cell senescence. Herein, we hypothesized that these PIs could induce premature aging of osteoblast precursors, human bone marrow mesenchymal stem cells (MSCs), and affect their capacity to differentiate into osteoblasts. Senescence was studied in proliferating human MSCs after a 30‐day exposure to atazanavir and lopinavir with or without ritonavir. When compared to untreated cells, PI‐treated MSCs had a reduced proliferative capacity that worsened with increasing passages. PI treatment led to increased oxidative stress and expression of senescence markers, including prelamin‐A. Pravastatin, which blocks prelamin‐A farnesylation, prevented PI‐induced senescence and oxidative stress, while treatment with antioxidants partly reversed these effects. Moreover, senescent MSCs presented a decreased osteoblastic potential, which was restored by pravastatin treatment. Because age‐related bone loss is associated with increased bone marrow fat, we also evaluated the capacity of PI‐treated MSCs to differentiate into adipocyte. We observed an altered adipocyte differentiation in PI‐treated MSCs that was reverted by pravastatin. We have shown that some PIs alter osteoblast formation by affecting their differentiation potential in association with altered senescence in MSCs, with a beneficial effect of statin. These data corroborate the clinical observations and allow new insight into pathophysiological mechanisms of PI‐induced bone loss in HIV‐infected patients.  相似文献   

10.
We here compared the changes induced by subcutaneous injection of PTHrP (1-36) or PTHrP (107-139) (80 μg/kg/day, 5 days/week for 4 or 8 weeks) in bone histology and bone remodeling factors, and in bone marrow cells (BMCs) ex vivo, in ovariectomized (OVX) mice. We also examined the osteogenic effects of these peptides in mouse mesenchymal C3H10T1/2 cells under oxidative stress condition in vitro, which recapitulates the effects of OVX. We confirmed that PTHrP (1-36) exerts bone anabolic actions, as assessed by bone histology and osteoblast differentiation markers in the long bones and plasma from OVX mice. PTHrP (107-139) was also efficient in stimulating several bone formation parameters, and it dramatically decreased bone resorption markers. Moreover, both PTHrP peptides modulate DKK-1 and Sost/sclerostin in osteoblast-like UMR-106 cells highly expressing these Wnt pathway inhibitors, related to their osteogenic action in this in vivo scenario. Administration of either PTHrP peptide improved osteogenic differentiation in BMCs from OVX mice ex vivo and in mouse mesenchymal C3H10T1/2 cells under oxidative stress condition in vitro. These data demonstrate that PTHrP (1-36) and PTHrP (107-139) can exert similar osteogenic effects in the appendicular skeleton of OVX mice. Our results suggest that these effects might occur in part by modulating the Wnt pathway. These findings lend credence to the notion that the osteogenic action of PTHrP (107-139) is likely a consequence of its anti-resorptive and anabolic features, and further support the usefulness of PTHrP (1-36) as a bone anabolic peptide in the setting of estrogen-depletion.  相似文献   

11.
12.
In tetrapod long bones, Hedgehog signalling is required for osteoblast differentiation in the perichondrium. In this work we analyse skeletogenesis in zebrafish larvae treated with the Hedgehog signalling inhibitor cyclopamine. We show that cyclopamine treatment leads to the loss of perichondral ossification of two bones in the head. We find that the Hedgehog co-receptors patched1 and patched2 are expressed in regions of the perichondrium that will form bone before the onset of ossification. We also show that cyclopamine treatment strongly reduces the expression of osteoblast markers in the perichondrium and that perichondral ossification is enhanced in patched1 mutant fish. This data suggests a conserved role for Hedgehog signalling in promoting perichondral osteoblast differentiation during vertebrate skeletal development. However, unlike what is seen during long bone development, we did not observe ectopic chondrocytes in the perichondrium when Hedgehog signalling is blocked. This result may point to subtle differences between the development of the skeleton in the skull and limb.  相似文献   

13.
The interaction between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation.Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen α1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The expression of bone formation markers was activated in the bone formation phase, followed by the stimulation of RANKL/OPG expression in the bone resorption phase, which confirmed that these molecules are key factors linking bone formation to resorption during bone remodeling.  相似文献   

14.
15.
Gene array analysis of osteoblast differentiation.   总被引:4,自引:0,他引:4  
  相似文献   

16.
17.
Glucocorticoids play an important role in the normal regulation of bore remodeling; however continued exposure of bone to glucocorticoid excess results in osteoporosis. In vivo, glucocorticoids stimulate bone resorption and decreasae bone formation, and in vitro studies have shown that while glucocorticoids stimulateosteoblastic differentiation, they have important inhibitory actions on bone formation. Glucocorticoids have manyeffects on osteoblast gene expression, including down-regulation of type 1 collagen and osteocalcin, and up-regulation of interstitial collagenase. The synthesis and activity of osteoblast growth factors can be modulated by glucocorticoids as well. For example, insulin-like growth factor 1 (IGF-1) is an important stimulator of osteoblast function, and expression of IGF-1 is decreased by glucocorticoids. The activity of IGF 1 can be modified by IGF binding proteins (IGFBPs), and theirsynthesis is also regulated by glucocorticoids. Thus, glucocorticoid action on osteoblasts can be direct, by activating or repressing osteoblast gene expression, or indirect by altering the expression or activity of osteoblast growth factors. Further investigation of the mechanisms by which glucocorticoids mnodulate gene expression in bore cells will contribute to our understanding or steroid hormone biology and will provide a basis for the design of effective treatments for glucocorticoid-induced osteoporosis.  相似文献   

18.
19.
20.
Upon termination of bone matrix synthesis, osteoblasts either undergo apoptosis or differentiate into osteocytes or bone lining cells. In this study, we investigated the role of matrix metalloproteinases (MMPs) and growth factors in the differentiation of osteoblasts into osteocytes and in osteoblast apoptosis. The mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts were either grown on two-dimensional (2-D) collagen-coated surfaces, where they morphologically resemble flattened, cuboidal bone lining cells, or embedded in three-dimensional (3-D) collagen gels, where they resemble dendritic osteocytes constituting a network of cells. When MC3T3-E1 osteoblasts were grown in a 3-D matrix in the presence of an MMP inhibitor (GM6001), the cell number was dose-dependently reduced by approximately 50%, whereas no effect was observed on a 2-D substratum. In contrast, the murine mature osteocyte cell line, MLO-Y4, was unaffected by GM6001 under all culture conditions. According to TUNEL assay, the osteoblast apoptosis was increased 2.5-fold by 10 microm GM6001. To investigate the mechanism by which MMPs mediate the survival of osteoblasts, we examined the effect of GM6001 on MC3T3-E1 osteoblasts in the presence of extracellular matrix components and growth factors, including tenascin, fibronectin, laminin, collagenase-cleaved collagen, gelatin, parathyroid hormone, basic fibroblast growth factor, vascular epidermal growth factor, insulin-like growth factor, interleukin-1, and latent and active transforming growth factor-beta (TGF-beta). Only active TGF-beta, but not latent TGF-beta or other agents tested, restored cell number and apoptosis to control levels. Furthermore, we found that the membrane type MMP, MT1-MMP, which is produced by osteoblasts, could activate latent TGF-beta and that antibodies neutralizing endogenous TGF-beta led to a similar decrease in cell number as GM6001. Whereas inhibitors of other protease families did not induce osteoblast apoptosis, an inhibitor of the p44/42 mitogen-activated protein kinase showed the same but non-synergetic effect as GM6001. These findings suggest that MMP-activated TGF-beta maintains osteoblast survival during trans-differentiation into osteocytes by a p44/42-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号