首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本实验旨在对Enterobacter cloacae Z0206菌进行发酵培养,以制备胞外多糖,并对其体外抗氧化活性进行初步研究。通过产多糖菌E.cloacaeZ0206的深层发酵制备细菌胞外多糖,在此基础上对其清除DPPH自由基、超氧阴离子、抑制羟自由基的能力以及还原力等四个方面进行实验,评价其抗氧化活性。结果表明,深层发酵制备的E.cloacaeZ0206胞外多糖产量为6.62g/L,其在5mg/mL时对DPPH自由基和羟自由基的清除率分别达到61.57%和40.08%。提示E.cloacaeZ0206细菌胞外多糖具有显著的抗氧化能力,具有开发为抗氧化类食品或药品的潜力。  相似文献   

2.
Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated with various concentrations of farnesol (0, 3, 30, and 300 μM) and incubated at 37°C for 24 h. The extent and characteristics of biofilm formation were then assessed microscopically and with a semiquantitative colorimetric technique based on the use of 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The results indicated that the effect of farnesol was dependent on the concentration of this compound and the initial adherence time, and preincubation with 300 μM farnesol completely inhibited biofilm formation. Supernatant media recovered from mature biofilms inhibited the ability of planktonic C. albicans to form filaments, indicating that a morphogenetic autoregulatory compound is produced in situ in biofilms. Northern blot analysis of RNA extracted from cells in biofilms indicated that the levels of expression of HWP1, encoding a hypha-specific wall protein, were decreased in farnesol-treated biofilms compared to the levels in controls. Our results indicate that farnesol acts as a naturally occurring quorum-sensing molecule which inhibits biofilm formation, and we discuss its potential for further development and use as a novel therapeutic agent.  相似文献   

3.
群体感应(quorum sensing,QS)是指细胞感知周围同类细胞的多寡或密度并调控基因表达的系统,它对大多数细菌的生物膜形成至关重要。目前对霍乱弧菌的QS系统已有较深入的研究,该菌的群体感应系统通过HapR、LuxO等多种信号分子调控生物膜的形成及消散。干扰QS系统将成为治疗生物膜相关感染的新方向。  相似文献   

4.
5.
Biofilms play a pivotal role in infections related to devices. Biofilm formation in Escherichia coli is mediated by the quorum-sensing E. coli regulator C (QseC), the histidine sensor kinase that can sense epinephrine (EPI)/norepinephrine (NE). In this study, we evaluate the role of the QseC quorum-sensing sensor kinase in epinephrine-enhanced motility and biofilm formation by E. coli. An E. coli MC1000 qseC mutant was constructed. We investigated the role of the QseC in the formation of biofilms on the surface of medical-grade polyvinyl chloride using the E. coli K-12 MC1000 strain as well as a corresponding qseC mutant. Addition of EPI/NE increased biofilm formation by wild-type K-12 MC1000 but not by the isogenic qseC mutant. Scanning confocal laser microscopy corroborated these results by showing that EPI/NE addition significantly increased biofilm’s thickness. As expected, the addition of EPI/NE to the qseC mutant, which lacks the ability to sense the hormones, failed to stimulate biofilm formation. Since EPI/NE addition increased bacterial motility, we proposed that their stimulatory effects on biofilm formation occur by enhancing bacterial motility and altering biofilm architecture. We also found that EPI/NE regulate motility and the biofilm phenotype via QseC, as motility was diminished and biofilm formation was significantly decreased in a qseC deletion mutant. These results indicate that EPI/NE induce E. coli biofilm formation on the surface of polyvinyl chloride through QseC. Cross-talk between E. coli (quorum sensing) and host hormones may explain the pathogen-caused opportunistic infections that occur in patients with prosthetic devices used during hormone level fluctuations in the host.  相似文献   

6.
Whole-cell suspensions of Enterobactercloacae SLD1a-1 produced dimethylselenide(DMSe) from selenate, selenite, elementalselenium, dimethylselenone,seleno-DL-methionine, 6-selenoinosine, and6-selenopurine. Cell-free extracts of thebacterium produced the formation of DMSe fromorganic selenium compounds, includingdimethylselenone, dimethylselenoniopropionate,seleno-DL-methionine, seleno-DL-ethionine, and6-selenoguanosine. The highest rate of DMSeproduction occurred from whole-cell suspensionsand cell-free extracts containingdimethylselenone. DMSe was also produced bycell-free extracts containing selenite orelemental selenium and methylcobalamin. Cell-free extracts did not produce DMSe frominorganic selenium when S-adenosyl-L-methionine was present. Additionally, DL-homocysteine and L-methioninewere found to inhibit selenium volatilization. These findings suggest the formation of DMSefrom inorganic selenium occurs through thetransfer of a methyl group frommethylcobalamin.  相似文献   

7.
Enterobacter sakazakii has been reported to form biofilms, but environmental conditions affecting attachment to and biofilm formation on abiotic surfaces have not been described. We did a study to determine the effects of temperature and nutrient availability on attachment and biofilm formation by E. sakazakii on stainless steel and enteral feeding tubes. Five strains grown to stationary phase in tryptic soy broth (TSB), infant formula broth (IFB), or lettuce juice broth (LJB) at 12 and 25°C were examined for the extent to which they attach to these materials. Higher populations attached at 25°C than at 12°C. Stainless steel coupons and enteral feeding tubes were immersed for 24 h at 4°C in phosphate-buffered saline suspensions (7 log CFU/ml) to facilitate the attachment of 5.33 to 5.51 and 5.03 to 5.12 log CFU/cm2, respectively, before they were immersed in TSB, IFB, or LJB, followed by incubation at 12 or 25°C for up to 10 days. Biofilms were not produced at 12°C. The number of cells of test strains increased by 1.42 to 1.67 log CFU/cm2 and 1.16 to 1.31 log CFU/cm2 in biofilms formed on stainless steel and feeding tubes, respectively, immersed in IFB at 25°C; biofilms were not formed on TSB and LJB at 25°C, indicating that nutrient availability plays a major role in processes leading to biofilm formation on the surfaces of these inert materials. These observations emphasize the importance of temperature control in reconstituted infant formula preparation and storage areas in preventing attachment and biofilm formation by E. sakazakii.  相似文献   

8.
This work aimed to optimize carbon and nitrogen sources for the growth of Enterobacter cloacae B14 and its biosurfactant (BS) production via One-Variable-At-a-Time (OVAT) method. The BS stability under a range of pH and temperatures was assessed. Antimicrobial activity against Gram-positive and Gram-negative pathogens was determined by the agar well diffusion method. The results showed that the optimum carbon and nitrogen sources for BS production were maltose and yeast extract, respectively, with a maximum BS yield of (39.8 ± 5.2) mg BS/g biomass. The highest emulsification activity (E24) was 79%, which is significantly higher than in the previous studies. We found that B14 BS can withstand a wide range of pH values from 2 to10. It could also function under a range of temperatures from 30–37°C. Thin Layer Chromatography (TLC) and Fourier Transform Infrared Spectrometry (FTIR) analysis confirmed that B14 BS is a glycolipid-like compound, which is rarely found in Enterobacter spp. Cell-free broth showed inhibition against various pathogens, preferable to Gram-positive ones. It had better antimicrobial activity against Bacillus subtilis than a commonly-used antibiotic, tetracycline. Furthermore, B14 broth could inhibit the growth of a tetracycline-resistant Serratia marcescens. Our results showed promising B14 BS applications not only for bioremediation but also for the production of antimicrobial products.Key words: biosurfactant, cultivation media, Enterobacter cloacae, antimicrobial activity, stability  相似文献   

9.
Production of 2,3-butanediol by newly isolated Enterobacter cloacae   总被引:2,自引:0,他引:2  
Enterobacter cloacae NRRL B-23289 was isolated from local decaying wood/corn soil samples while screening for microorganisms for conversion of l-arabinose to fuel ethanol. The major product of fermentation by the bacterium was meso-2,3-butanediol (2,3-BD). In a typical fermentation, a BD yield of 0.4 g/g arabinose was obtained with a corresponding productivity of 0.63 g/l per hour at an initial arabinose concentration of 50 g/l. The effects of initial arabinose concentration, temperature, pH, agitation, various monosaccharides, and multiple sugar mixtures on 2,3-BD production were investigated. BD productivity, yield, and byproduct formation were influenced significantly within these parameters. The bacterium utilized sugars from acid plus enzyme saccharified corn fiber and produced BD (0.35 g/g available sugars). It also produced BD from dilute acid pretreated corn fiber by simultaneous saccharification and fermentation (0.34 g/g theoretical sugars). Received: 17 December 1998 / Revision received: 9 March 1999 / Accepted: 20 March 1999  相似文献   

10.
11.
Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3′,5′-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation.  相似文献   

12.
13.
Biofilm formation is a complex developmental process regulated by multiple environmental signals. In addition to other nutrients, the transition metal iron can also regulate biofilm formation. Iron-dependent regulation of biofilm formation varies by bacterial species, and the exact regulatory pathways that control iron-dependent biofilm formation are often unknown or only partially characterized. To address this gap in our knowledge, we examined the role of iron availability in regulating biofilm formation in Escherichia coli. The results indicate that biofilm formation is repressed under low-iron conditions in E. coli. Furthermore, a key iron regulator, IscR, controls biofilm formation in response to changes in cellular Fe-S homeostasis. IscR regulates the FimE recombinase to control expression of type I fimbriae in E. coli. We propose that iron-dependent regulation of FimE via IscR leads to decreased surface attachment and biofilm dispersal under iron-limiting conditions.  相似文献   

14.
15.
16.
17.
Taxonomical investigation was performed on the bacterium, strain NB 320 isolated from soil, and it was identified as Enterobacter cloacae. This bacterium produced the enzyme which catalyzed the transamination reaction between 3,4-dihydroxyphenyl pyruvate and an amino acid to form l-Dopa.

The optimum culture conditions for the enzyme production were studied along with the characteristics of the enzyme. The enzyme of the strain was different in some properties from that of Alcaligenes faecalis IAM 1015 which had been already studied. The former utilized glutamate as an amino donor best among the amino acids tested for transamination and was induced by the addition of glutamine and asparagine. Intact cells of the strain did not catalyze the reaction unless they were treated with sonication or with a detergent.  相似文献   

18.
An exopolysaccharide producing marine bacterium, Enterobacter cloacae, was isolated from marine sediment collected from Gujarat coast, India. Chemical investigation of exopolysaccharide (EPS 71 a) revealed that this exopolysaccharide was an acidic polysaccliaride containing high amount of uronic acid, fucose and sulfate which is rare for bacterial exopolysaccharides. EPS 71a was found to have fucose, galactose, glucose and glucuronic acid in a molar ratio of 2: 1: 1: 1.  相似文献   

19.
A mixed microbial culture capable of metabolizing the explosive pentaerythritol tetranitrate (PETN) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A strain of Enterobacter cloacae, designated PB2, was isolated from this culture and was found to use PETN as a sole source of nitrogen for growth. Growth yields suggested that 2 to 3 mol of nitrogen was utilized per mol of PETN. The metabolites pentaerythritol dinitrate, 3-hydroxy-2,2-bis-[(nitrooxy)methyl]propanal, and 2,2-bis-[(nitrooxy)methyl]-propanedial were identified by mass spectrometry and 1H-nuclear magnetic resonance. An NADPH-dependent PETN reductase was isolated from cell extracts and shown to liberate nitrite from PETN, producing pentaerythritol tri- and dinitrates which were identified by mass spectrometry. PETN reductase was purified to apparent homogeneity by ion-exchange and affinity chromatography. The purified enzyme was found to be a monomeric flavoprotein with a M(r) of approximately 40,000, binding flavin mononucleotide noncovalently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号