首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial biofilms are increasingly seen as important for the successful settlement of marine invertebrate larvae. Here we tested the effects of biofilms on settlement of the sea urchin Heliocidaris erythrogramma. Larvae settled on many surfaces including various algal species, rocks, sand and shells. Settlement was reduced by autoclaving rocks and algae, and by treatment of algae with antibiotics. These results, and molecular and culture-based analyses, suggested that the bacterial community on plants was important for settlement. To test this, approximately 250 strains of bacteria were isolated from coralline algae, and larvae were exposed to single-strain biofilms. Many induced rates of settlement comparable to coralline algae. The genus Pseudoalteromonas dominated these highly inductive strains, with representatives from Vibrio, Shewanella, Photobacterium and Pseudomonas also responsible for a high settlement response. The settlement response to different bacteria was species specific, as low inducers were also dominated by species in the genera Pseudoalteromonas and Vibrio. We also, for the first time, assessed settlement of larvae in response to characterised, monospecific biofilms in the field. Larvae metamorphosed in higher numbers on an inducing biofilm, Pseudoalteromonas luteoviolacea, than on either a low-inducing biofilm, Pseudoalteromonas rubra, or an unfilmed control. We conclude that the bacterial community on the surface of coralline algae is important as a settlement cue for H. erythrogramma larvae. This study is also an example of the emerging integration of molecular microbiology and more traditional marine eukaryote ecology.  相似文献   

2.

The green alga Ulva reticulata (Forsskal) is often free from biofouling in Hong Kong waters. An early study indicated that bioactive substances from this alga inhibit settlement of the polychaete Hydroides elegans (Haswell). It is also predicted that epibiotic bacteria protect this alga from micro- and macrofouling. In this study, bacterial strains from the surface of U. reticulata were isolated and their inhibitive activities on micro- and macrofouling assayed. The strains were identified by 16S rRNA analysis as belonging to the genera Alteromonas , Pseudoalteromonas and Vibrio . There was no significant effect of these strains or their extracts (aqueous and ethanol) on the growth of five Vibrio strains isolated from natural biofilm. Two bacterial strains ( Alteromonas sp. and Vibrio sp. 3) were non-toxic to the benthic diatom Nitzschia paleacea (Grunow) while the other five strains caused a low level of mortality. No one bacterial strain was toxic to the larvae of H. elegans . Aqueous extract of one of the isolated bacterial species, i.e. Vibrio sp. 2, significantly ( p <0.00001) inhibited the settlement and metamorphosis of H. elegans larvae. The putative antifouling compounds have a molecular weight of >100 kD. On the other hand, biofilm of Pseudoalteromonas sp. 2 and aqueous extract of Vibrio sp. 2 suppressed the settlement of larvae induced by 3-isobutyl-1-methylxanthine (IBMX). Other epibiotic bacteria and their extracts had neither inhibitive nor inductive effects on larval settlement of H. elegans . The results indicate that the antifouling mechanism of U. reticulata may be dependent not only on materials from the macroalga itself but also on the epibiotic bacteria on the algal surface.  相似文献   

3.

This study has investigated the relationship between bacterial biofilms and the attachment of zoospores of the green macroalga Enteromorpha. Zoospore attachment to glass slides was enhanced in the presence of a bacterial biofilm assemblage, and the number attaching increased with the number of bacteria present. Zoospores also attached to control surfaces, but at lower numbers; glass surfaces conditioned in autoclaved seawater had the same number of zoospores attached as new glass surfaces. The spatial relationship between bacterial cells and attached zoospores was quantified by image analysis. The hypothesis tested was that zoospores attached preferentially to, or in the very close vicinity of, bacterial cells. Spatial microscopic analysis showed that more bacteria were covered by zoospores than would be expected if zoospore attachment was a random process and zoospores appeared to attach to bacterial clusters. The most likely explanation is that zoospores are attracted to bacterial cells growing on surfaces and the presence of a bacterial biofilm enhances their settlement. The possibility is discussed that Enteromorpha zoospores respond to a chemical signal produced by bacteria, i.e. that there may be prokaryote‐eukaryote cell signalling.  相似文献   

4.
N -acylhomoserine lactone (AHL) quorum-sensing molecules modulate the swimming behaviour of zoospores of the macroalga Ulva to facilitate the location of bacterial biofilms. Here we show that the intertidal surfaces colonized by Ulva are dominated by Alphaproteobacteria , particularly the Rhodobacteraceae family, and the Bacteroidetes family Flavobacteriaceae , and that this diverse assemblage both produces and degrades AHLs. N -acylhomoserine lactones could also be extracted from the surfaces of pebbles recovered from intertidal rock-pools. Bacteria representative of this assemblage were isolated and tested for the production and degradation of AHLs, and for their ability to modulate zoospore settlement at different biofilm densities. Of particular interest was a Shewanella sp. This strain produced three major AHLs (OC4, OC10 and OC12) in the late exponential phase, but the longer-chain AHLs were rapidly degraded in the stationary phase. Degradation occurred via both lactonase and amidase activity. A close relationship was found between AHL synthesis and Ulva zoospore settlement. The Shewanella isolate also interfered with AHL production by a Sulfitobacter isolate and its ability to enhance zoospore settlement in a polymicrobial biofilm. This influence on the attachment of Ulva zoospores suggests that AHL-degrading strains can affect bacterial community behaviour by interfering with quorum sensing between neighbouring bacteria. More importantly, these interactions may exert wider ecological effects across different kingdoms.  相似文献   

5.
Bacteria utilize quorum sensing to regulate the expression of cell density-dependant phenotypes such as biofilm formation and virulence. Zoospores of the marine alga Ulva intestinalis exploit the acyl-homoserine lactone (AHL) quorum sensing system to identify bacterial biofilms for preferential settlement. Here, we demonstrate that AHLs act as strong chemoattractants for Ulva zoospores. Chemoattraction does not involve a chemotactic orientation towards the AHL source. Instead, it occurs through a chemokinesis in which zoospore swimming speed is rapidly decreased in the presence of AHLs. The chemoresponse to AHLs was dependant on the nature of the acyl side chain, with N-(3-oxododecanoyl)-homoserine lactone (30-C12-HSL) being the most effective signal molecule. Mean zoospore swimming speed decreased more rapidly over wild-type biofilms of the marine bacteria Vibrio anguillarum relative to biofilms of the vanM mutant, in which AHL synthesis is disrupted. These data implicate a role for AHL-mediated chemokinesis in the location and preferential settlement of Ulva zoospores on marine bacterial assemblages. Exposure to AHLs did not inhibit the negative phototaxis of Ulva zoospores, indicating that chemoattraction to bacterial biofilms does not preclude the response to a light stimulus in substrate location.  相似文献   

6.
During the winter-spring from 2004 to 2006 in northeastern China cultured Japanese sea cucumber Apostichopus japonicus suffered from a serious disease. Clinical signs included swollen mouth, skin ulceration and massive mortality. Clinical samples taken during this period were studied. Thirty-one bacterial samples were isolated from diseased sea cucumbers and identified through biochemical tests, 16S rRNA gene sequence analysis and PCR amplification, followed by pathogenicity determination. The results showed that the 31 isolates belonged to the genera Vibrio (64.5%), Shewanella (12.9%), Serratia (12.9%), Pseudoalteromonas (6.4%) and Flavobacterium (3.2 %). The 3 prominent strains were Vibrio splendidus (41.9%), Shewanella (12.9%) and Serratia odorifera biogroup I (12.9%). Pathogenicity tests demonstrated that 13 out of 31 isolates were pathogenic, including 8 strains of V splendidus, 3 strains of Shewanella sp. and 2 strains of Pseudoalteromonas tetraodonis. The pathogenic V splendidus showed the highest frequency of appearance. Median lethal dose (LD50) values (14 d) of V splendidus, Shewanella sp. and P. tetraodonis were 1.74 x 10(7), 7.76 x 10(6), 7.24 x 10(7) CFU g(-1) body weight of sea cucumber, respectively. The virulences differed by species: Shewanella sp. > V splendidus> P. tetraodonis. This is the first report of Shewanella sp. virulence in sea cucumber.  相似文献   

7.
A total of 319 bacterial strains isolated from the surfaces of seaweeds and invertebrates were tested for their effects on settlement of Ulvalactuca spores and Hydroidesezoensis larvae in laboratory bioassays. Of the 192 bacterial strains isolated from the surfaces of seaweeds 63 isolates were shown to be inhibitory against the settlement of algal spores and 62 isolates were inhibitory against larval settlement. Thirty-seven percent of the 127 bacterial strains isolated from the surfaces of marine invertebrates were shown to be inhibitory against algal spores and larval settlement. The strain CI4 isolated from an adult Cionaintestinalis showed the strongest inhibitory effect and was identified as Pseudoalteromonas sp. via 16S rRNA gene sequencing. The high proportions of host associated bacteria producing antifouling compounds suggest that these bacteria may help the host organism in the defense against fouling.  相似文献   

8.
Ma Y X  Liu P L  Yu S B  Li D T  Cao S M 《农业工程》2009,29(4):222-226
A total of 319 bacterial strains isolated from the surfaces of seaweeds and invertebrates were tested for their effects on settlement of Ulvalactuca spores and Hydroidesezoensis larvae in laboratory bioassays. Of the 192 bacterial strains isolated from the surfaces of seaweeds 63 isolates were shown to be inhibitory against the settlement of algal spores and 62 isolates were inhibitory against larval settlement. Thirty-seven percent of the 127 bacterial strains isolated from the surfaces of marine invertebrates were shown to be inhibitory against algal spores and larval settlement. The strain CI4 isolated from an adult Cionaintestinalis showed the strongest inhibitory effect and was identified as Pseudoalteromonas sp. via 16S rRNA gene sequencing. The high proportions of host associated bacteria producing antifouling compounds suggest that these bacteria may help the host organism in the defense against fouling.  相似文献   

9.
Callow ME  Callow JA 《Biofouling》2000,15(1-3):49-56
The green alga Enteromorpha is the most important macroalga that fouls ships, submarines and underwater structures. Major factors in its success in colonising new substrata are the production of enormous numbers of swimming spores and their ability to locate surfaces on which to settle. Factors facilitating the settlement and adhesion of asexual zoospores are examined in this article. Settlement and adhesion may be regulated by topographical, biological, chemical and physico-chemical cues, all of which are modified by the presence of microbial biofilm. The level of gregarious zoospore settlement is related to spore density and may be mediated by a number of external cues including fatty acids and 'detritus'.  相似文献   

10.
The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so other compounds/mechanisms must be present in the other Pseudoalteromonas strains with antifouling activity.  相似文献   

11.
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2) in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.  相似文献   

12.
One hundred and four strains of heterotrophic bacteria have been isolated and characterized from two species of bivalve mollusks cultivated in the Gulf of Nha Trang (Vietnam) and from the water of a mariculture farm. The isolates have been identified on the basis of morphological, physiological, biochemical, and chemotaxonomic properties, as well as by the content of G+C bases in DNA. In the microflora of mollusks, Vibrio alginolyticus was predominant; the pathogenic species V. harveyi and V. splendidus were found as well. Staphylococci and bacilli occupied the second place in abundance after vibrios. In addition, coryneforms and enterobacteria, as well as Pseudomonas spp. and Pseudoalteromonas spp., were revealed. The composition of the water microflora was more diverse as compared with the microflora of mollusks. In the water, Bacillus spp., Vibrio spp., and Pseudomonas spp. were predominant. Brevibacterium spp. and other coryneform bacteria, as well as enterobacteria, occurred in significant amounts. In addition, Pseudoalteromonas spp., Marinococcus sp., Halobacillus sp., Shewanella sp., Sulfitobacter sp., and bacteria of the CFB cluster were noticed. The presence of pathogenic and conditionally pathogenic bacterial species in the water and mollusks is probably the reason for the high death rate of cultivated animals at the mariculture farm.  相似文献   

13.
The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.  相似文献   

14.
The aim of this study was to isolate bacteria with antimicrobial activities from the marine sponges Aplysina aerophoba and Aplysina cavernicola. The obtained 27 isolates could be subdivided into eight phylogenetically different clusters based on comparative sequence analysis of their 16S rDNA genes. The sponge isolates were affiliated with the low (Bacillus) and high G+C Gram-positive bacteria (Arthobacter, Micrococcus), as well as the alpha-Proteobacteria (unknown isolate) and gamma-Proteobacteria (Vibrio, Pseudoalteromonas). One novel Bacillus species was identified and two species were closely related to previously uncharacterized strains. Isolates with antimicrobial activity were numerically most abundant in the genera Pseudoalteromonas and the alpha-Proteobacteria. The sponge isolates show antimicrobial activities against Gram-positive and Gram-negative reference strains but not against the fungus Candida albicans. A general pattern was observed in that Gram-positive bacteria inhibited Gram-positive strains while Gram-negative bacteria inhibited Gram-negative isolates. Antimicrobial activities were also found against clinical isolates, i.e. multi-resistant Staphylococcus aureus and Staphylococcus epidermidis strains isolated from hospital patients. The high recovery of strains with antimicrobial activity suggests that marine sponges represent an ecological niche which harbors a hitherto largely uncharacterized microbial diversity and, concomitantly, a yet untapped metabolic potential.  相似文献   

15.
Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.  相似文献   

16.
Many green algae cannot develop normally when they are grown under axenic conditions. Monostroma oxyspermum, for example, proliferates unicellularly in an aseptic culture, but develops into a normal foliaceous gametophyte in the presence of some marine bacteria. More than 1000 bacterial strains were isolated from marine algae and sponges and assayed for their ability to induce the morphogenesis of unicellular M. oxyspermum. Fifty bacterial strains exhibiting morphogenesis-inducing activity against unicellular M. oxyspermum were isolated. The partial gyrB (approximately 1.2 kbp) and 16S rDNA (approximately 1.4 kbp) sequences of about 40 active strains were determined, and their phylogenetic relationships were analysed. All these strains were located within the Cytophaga-Flavobacterium-Bacteroides (CFB) complex, and most of these strains were clustered in a clade comprising Zobellia uliginosa. On the other hand, these bacteria also exhibited morphogenetic activity against germ-free spores of Ulva pertusa, Ulva conglobata and Enteromorpha intestinalis. Moreover, these bacteria induced the release of spores from the leafy young gametophyte of M. oxyspermum. These results indicate that strains belonging to several groups in the CFB complex play an important role in the normal development of green algae in the marine coastal environment.  相似文献   

17.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.  相似文献   

18.
Xu Y  Miao L  Li XC  Xiao X  Qian PY 《Biofouling》2007,23(1-2):131-137
Deep-sea microorganisms are a new source of bioactive compounds. In this study, crude ethyl acetate extracts of 176 strains of deep-sea bacteria, isolated from sediments of the West Pacific Ocean, were screened for their antibacterial activity against four test bacterial strains isolated from marine biofilms. Of these, 28 deep-sea bacterial strains exhibited antibacterial activity against one or more of the bacteria tested. Active deep-sea bacterial strains belonged mainly to the genera of Pseudomonas, Psychrobacter and Halomonas. Additionally, antilarval activity of 56 deep-sea bacterial strains was screened using Balanus amphitrite larvae. Seven bacterial strains produced metabolites that had strong inhibitive effects on larval settlement. None of these metabolites showed significant toxicity. The crude extract of one deep-sea Streptomyces strain could completely inhibit larval settlement at a concentration of 25 microg ml(-1).  相似文献   

19.
We investigated surface selection and adhesion of motile zoospores of a green, macrofouling alga (Enteromorpha) to self-assembled monolayers (SAMs) having a range of wettabilities. The SAMs were formed from alkyl thiols terminated with methyl (CH(3)) or hydroxyl (OH) groups or mixtures of CH(3)- and OH-terminated alkyl thiols and were characterized by measuring the advancing contact angles and by X-ray photoelectron spectroscopy. There was a positive correlation between the number of spores that attached to the SAMs and increasing contact angle (hydrophobicity). Moreover, the sizes of the spore groups (adjacent spores touching) were larger on the hydrophobic SAMs. Video microscopy of a patterned arrangement of SAMs showed that more zoospores were engaged in swimming and "searching" above the hydrophobic sectors than above the hydrophilic sectors, suggesting that the cells were able to "sense" that the hydrophobic surfaces were more favorable for settlement. The results are discussed in relation to the attachment of microorganisms to substrata having different wettabilities.  相似文献   

20.
A comparative study of the lipid composition of 26 strains (including type strains) of marine Gammaproteobacteria belonging to the genera Shewanella, Alteromonas, Pseudoalteromonas, Marinobacterium, Microbulbifer, and Marinobacter was carried out. The bacteria exhibited genus-specific profiles of ubiquinones, phospholipids, and fatty acids, which can serve as reliable chemotaxonomic markers for tentative identification of new isolates. The studied species of the genus Shewanella were distinguished by the presence of two types of isoprenoid quinones, namely, ubiquinones Q-7 and Q-8 and menaquinones MK-7 and MMK-7; five phospholipids typical of this genus, namely, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), lyso-PE, and acyl-PG; and the fatty acids 15:0, 16:0, 16:1 (n-7), 17:1 (n-8), i-13:0, and i-15:0. The high level of branched fatty acids (38-45%) and the presence of eicosapentaenoic acid (4%) may serve as criteria for the identification of this genus. Unlike Shewanella spp., bacteria of the other genera contained a single type of isoprenoid quinone: Q-8 (Alteromonas, Pseudoalteromonas, Marinobacterium, and Microbulbifer) or Q-9 (Marinobacter). The phospholipid compositions of these bacteria were restricted to three components: two major phospholipids (PE and PG) and a minor phospholipid, bisphosphatidic acid (Alteromonas and Pseudoalteromonas) or DPG (Marinobacterium, Microbulbifer, and Marinobacter). The bacteria exhibited genus-specific profiles of fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号