首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Haem binding to human serum albumin (HSA) endows the protein with peculiar spectroscopic properties. Here, the effect of ibuprofen and warfarin on the spectroscopic properties of ferric haem-human serum albumin (ferric HSA-haem) and of ferrous nitrosylated haem-human serum albumin (ferrous HSA-haem-NO) is reported. Ferric HSA-haem is hexa-coordinated, the haem-iron atom being bonded to His105 and Tyr148. Upon drug binding to the warfarin primary site, the displacement of water molecules--buried in close proximity to the haem binding pocket--induces perturbation of the electronic absorbance properties of the chromophore without affecting the coordination number or the spin state of the haem-iron, and the quenching of the 1H-NMR relaxivity. Values of Kd for ibuprofen and warfarin binding to the warfarin primary site of ferric HSA-haem, corresponding to the ibuprofen secondary cleft, are 5.4 +/- 1.1 x 10(-4) m and 2.1 +/- 0.4 x 10(-5) m, respectively. The affinity of ibuprofen and warfarin for the warfarin primary cleft of ferric HSA-haem is lower than that reported for drug binding to haem-free HSA. Accordingly, the Kd value for haem binding to HSA increases from 1.3 +/- 0.2 x 10(-8) m in the absence of drugs to 1.5 +/- 0.2 x 10(-7) m in the presence of ibuprofen and warfarin. Ferrous HSA-haem-NO is a five-coordinated haem-iron system. Drug binding to the warfarin primary site of ferrous HSA-haem-NO induces the transition towards the six-coordinated haem-iron species, the haem-iron atom being bonded to His105. Remarkably, the ibuprofen primary cleft appears to be functionally and spectroscopically uncoupled from the haem site of HSA. Present results represent a clear-cut evidence for the drug-induced shift of allosteric equilibrium(a) of HSA.  相似文献   

3.
In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina? and the obtained results are consistent with an independent HPLC analysis.  相似文献   

4.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

5.
Piperine, the bioactive alkaloid compound of the spice black pepper (Piper nigrum) exhibits a wide range of beneficial physiological and pharmacological activities. Being essentially water-insoluble, piperine is presumed to be assisted by serum albumin for its transport in blood. In this study, the binding of piperine to serum albumin was examined by employing steady state and time resolved fluorescence techniques. Binding constant for the interaction of piperine with human serum albumin, which was invariant with temperature in the range of 17-47 degrees C, was found to be 0.5 x 10(5)M(-1), having stoichiometry of 1:1. At 27 degrees C, the van't Hoff enthalpy DeltaH degrees was zero; DeltaS degrees and DeltaG degrees were found to be 21.4 cal mol(-1) K(-1) and -6.42 kcal mol(-1). The binding constant increased with the increase of ionic strength from 0.1 to 1.0M of sodium chloride. The decrease of Stern-Volmer constant with increase of temperature suggested that the fluorescence quenching is static. Piperine fluorescence showed a blue shift upon binding to serum albumin, which reverted with the addition of ligands -triiodobenzoic acid and hemin. The distance between piperine and tryptophan after binding was found to be 2.79 nm by F?rster type resonance energy transfer calculations. The steady state and time resolved fluorescence measurements suggest the binding of piperine to the subdomain IB of serum albumin. These observations are significant in understanding the transport of piperine in blood under physiological conditions.  相似文献   

6.
7.
Interactions of human serum albumin with chlorogenic acid and ferulic acid   总被引:8,自引:0,他引:8  
The interactions of chlorogenic acid and ferulic acid with human serum albumin (HSA) have been investigated by fluorescence and Fourier transformed infrared (FT-IR) spectrometry. Fluorescence results showed that one molecule of protein combined with one molecule of drugs at the molar ratio of drug to HSA ranging from 1 to 10, and their binding affinities (KA) are 4.37 x 10(4) M(-1) and 2.23 x 10(4) M(-1) for chlorogenic acid and ferulic acid, respectively. The primary binding site for chlorogenic acid is most likely located on IIA and that for ferulic acid in IIIA. The main mechanism of protein fluorescence quenching was static quenching process. Combining the curve-fitting results of infrared amide I and amide III bands, the alterations of protein secondary structure after drug complexation were estimated. With increasing the drug concentration, the protein alpha-helix structure decreased gradually and the reduction of protein alpha-helix structure reached about 7% and 5% for protein binding with chlorogenic acid and ferulic acid individually at the drug to protein molar ratio of 30. This indicated a partial unfolding of HSA in the presence of the two acids. From the fluorescence and FT-IR results, the binding mode was discussed.  相似文献   

8.
Ferrous human serum heme–albumin (HSA–heme–Fe(II)) displays globin-like properties. Here, the effect of ibuprofen and warfarin on kinetics of HSA–heme–Fe(II) nitrosylation is reported. Values of the second-order rate constant for HSA–heme–Fe(II) nitrosylation (kon) decrease from 6.3 × 106 M−1 s−1 in the absence of drugs, to 4.1 × 105 M−1 s−1 and 4.8 × 105 M−1 s−1, in the presence of saturating amounts of ibuprofen and warfarin, respectively, at pH 7.0 and 20.0 °C. From the dependence of kon on the drug concentration, values of the dissociation equilibrium constant for ibuprofen and warfarin binding to HSA–heme–Fe(II) (i.e., K = 3.2 × 10−3 M and 2.6 × 10−4 M, respectively) were determined. The observed allosteric effects could indeed reflect ibuprofen and warfarin binding to the regulatory fatty acid binding site FA2, which brings about an alteration of heme coordination, slowing down HSA–heme–Fe(II) nitrosylation. Present data highlight the allosteric modulation of HSA–heme–Fe(II) reactivity by heterotropic effectors.  相似文献   

9.
槐定碱与牛血清白蛋白的相互作用研究   总被引:1,自引:0,他引:1  
在模拟动物体生理条件下,用荧光猝灭、荧光偏振和紫外-可见吸收光谱法研究了槐定碱与牛血清白蛋白(BSA)结合作用。荧光猝灭数据显示,槐定碱与BSA发生反应生成了新的复合物,属于静态荧光猝灭。求出了不同温度(19、25、31、37℃)下槐定碱与BSA作用的结合常数分别为1.219×106,1.164×106,1.110×106和1.057×106L/mol,由van’tHoff方程式计算槐定碱与BSA反应的热力学参数:焓变ΔH和熵变ΔS值分别为-5.97kJ/mol和96.11J/(mol.K),表明槐定碱与BSA间的作用力以静电引力为主。以华法林和布洛芬(分别为siteI和siteII探针)为标记药物研究槐定碱在BSA上的结合位点,结果表明,槐定碱结合在BSA疏水空腔的siteI位点。  相似文献   

10.
The effect of acetylsalicylic acid, ibuprofen, indomethacin, ketoprofen, naproxen, phenylbutazone, and salicylic acid on the microsomal oxidative drug metabolism of rat liver was studied. Pretreatment of the rats with pharmacologic doses of acetylsalicylic acid, indomethacin, and ketoprofen decreased both the demethylase and hydroxylase activities of rat liver microsomes. These effects were paralleled by decreases in microsomal cytochrome P-450 content. The rate of the microsomal reactions was increased after pretreatment with ibuprofen and naproxen but only the former increased the concentration of cytochrome P-450. Phenylbutazone and salicylic acid had no in vivo effect on the hepatic monooxygenase. The addition of 1 mM of ibuprofen, indomethacin, ketoprofen, naproxen, and phenylbutazone to rat liver microsomes inhibit both the aminopyrine N-demethylase and p-nitro-anisole O-demethylase activities. The extent of the inhibition varied between 21 and 73% of the control incubation. Indomethacin, naproxen, and phenylbutazone also decreased the aniline hydroxylase activity to roughly 60% of the control value. Acetylsalicylic acid and salicylic acid had no in vitro effect on the microsomal monooxygenase. The nonsteroidal anti-inflammatory drugs produced a reverse type I binding spectrum with oxidized cytochrome P-450; indomethacin and phenylbutazone were the strongest ligands. There is no correlation between the effect of addition of nonsteroidal anti-inflammatory drugs to the hepatic microsomal homogenate and their in vivo effect on the monooxygenase activity.  相似文献   

11.
The binding activity of [3H]dexamethasone to the specific receptor was studied in the cytoplasmic fraction of a established fibroblast line derived from rat carrageenin granuloma in culture condition. Specific receptor to dexamethasone was demonstrated. Scatchard analysis revealed a single class of binding sites with a dissociation constant for [3H]dexamethasone of 3.64 - 10(-8) M and a concentration of binding sites of 0.825 pmol per mg cytosol protein. The number of cytoplasmic binding sites per cell was calculated at 1.15 - 10(5). Total binding activity to [3H]dexamethasone of the cytoplasmic fraction was enhanced when the cells were cultured in a medium containing salicylic acid was at 37 degrees C. The maximum enhancement was seen at the concentration of 10(-3)M and in 3h treatment of salicylic acid. This enhancement by salicylic acid was lost when cycloheximide was added to the culture medium at the same time. If salicyclic acid was added to the cell free system, it showed no effect on the binding activity. The other non-steroidal anti-inflammatory drugs; phenylbutazone and indomethacin,also enhanced the total binding activity to [3H]dexamethasone of the cytoplasmic fraction at the concentration of 2 - 10(-5) M and 2 - 10(-7) M, respectively.  相似文献   

12.
A mathematical treatment and an original microcalorimetric method are developed to verify an eventual competitive binding between any two substances for the same macromolecule. To apply this method, a competitive binding of L-tryptophan and one benzodiazepin (dipotassium chlorazepate) for human serum albumin is perfectly demonstrated.The association constants and the enthalpy variations are equal to 14 000 ± 2000 M?1 and ?6.6 ± 0.2 kcal/mol for human serum albumin · tryptophan complex and 13 000 ± 1000 M?1 and ?10.0 ± 0.2 kcal/mol for human serum albumin · chlorazepate complex. In all cases the stoichiometry is equal to one.The binding of tryptophan to human serum albumin is partially stereospecific; the association constant and the enthalpy variation for D-tryptophan complex are equal, respectively, to 1000 ± 200 M?1 and ?2.6 ± 0.3 kcal/mol.  相似文献   

13.
Serum albumin, the most abundant transport protein of mammalian blood, interacts with various nonsteroidal anti-inflammatory drugs (NSAIDs) affecting their disposition, metabolism, and excretion. A big group of chiral NSAIDs transported by albumin, profens, is created by derivatives of 2-arylpropionic acid. The chiral center in the structures of profens is adjacent to the carboxylate moiety and often determines different pharmacological properties of profen enantiomers. This study describes crystal structures of two albumins, isolated from equine and leporine serum, in complexes with three profens: ibuprofen, ketoprofen, and suprofen. Based on three-dimensional structures, the stereoselectivity of albumin is discussed and referred to the previously published albumin complexes with drugs. Drug Site 2 (DS2) of albumin, the bulky hydrophobic pocket of subdomain IIIA with a patch of polar residues, preferentially binds (S)-enantiomers of all investigated profens. Almost identical binding mode of all these drugs clearly indicates the stereoselectivity of DS2 towards (S)-profens in different albumin species. Also, the affinity studies show that DS2 is the major site that presents high affinity towards investigated drugs. Additionally, crystallographic data reveal the secondary binding sites of ketoprofen in leporine serum albumin and ibuprofen in equine serum albumin, both overlapping with previously identified naproxen binding sites: the cleft formed between subdomains IIIA and IIIB close to the fatty acid binding site 5 and the niche created between subdomains IIA and IIIA, called fatty acid site 6.  相似文献   

14.
Purpose: The purpose of this study was to confirm the hypothesis that a site-II-to-site-I displacement takes place when some nonsteroidal anti-inflammatory drugs are displaced by another drug from their high-affinity binding site to a site of lower affinity on human serum albumin (HSA).Methods: Diclofenac, sodium salt, was used as a representative example because of its prominent reversal of the Cotton effect. Effects of site-specific drugs on the free fraction of diclofenac were determined by equilibrium dialysis, and effects on induced circular dichroism (CD) of diclifenac bound to HSA were studied by CD and CD simulation techniques.Results: Ibuprofen, a site-II-specific drug, altered the CD spectrum of the diclofenac-HSA complex at a molar ratio of 0.5∶1 to that obtained at a higher ratio (5∶1) without ibuprofen. The induced CD spectrum obtained in the presence of ibuprofen was very similar to one that assumed that all diclofenac displaced from its high-affinity binding site (site II) became rebound to a lower-affinity site (site I). The rebinding could be influenced by a free energy linkage between the two sites which would make site I (or parts thereof) more suitable for diclofenac binding.Conclusion: We have confirmed the existence of a site II-to-site displacement, which is very striking and pharmacologically important, because the concentration of unbound drug being displaced is much lower than expected for a competitive mechanism.  相似文献   

15.
Cannabis is the most commonly used illicit drug worldwide. Cannabis users also appear to use other psychoactive drugs more frequently than noncannabis users. Here, Δ9-tetrahydrocannabinol (THC) and diazepam binding to human serum albumin (HSA) and HSA-heme is reported. THC binds to two different binding sites of HSA (K(d1) ≤ 10(-7) M and K(d2) = 10(-3)M) without affecting diazepam binding (K(d) = 1.2 × 10(-5) M). THC binding to the high-affinity site accounts for the low free fraction of the drug in plasma. Moreover, THC increases the affinity of heme for HSA. Accordingly, the affinity of THC for HSA-heme is higher than that for HSA. THC could bind to FA2 and FA7 sites, as substantiated by docking simulations; nevertheless, the observed allosteric effect(s) suggests that the primary binding site of THC is the FA2 cleft that positively modulates heme affinity. Possibly, the HSA conformational transition(s) induced by THC binding could account for drug delivery to the liver through receptor- mediated endocytosis.  相似文献   

16.
A simple and effective method was developed for determining binding sites of drugs on human serum albumin (HSA) by independent binding or competitive displacement of bilirubin using flow injection analysis-quartz crystal microbalance (FIA-QCM) system. Both independent and competitive bindings were entirely monitored in real time. Bilirubin as a site I-binding ligand was pre-bound to HSA sensor so as to occupy the drug-binding site I. When the model site II-binding drugs (ibuprofen, ketoprofen and flurbiprofen) were injected into the bilirubin pre-bound HSA system, the frequency continuously decreased by 6Hz, 4Hz and 5Hz, respectively, which was the same as that of their individual binding to HSA sensor. It indicated that the drug binding to site II was independent and did not interfere with bilirubin binding. However, when the model site I-binding drugs (iodipamide and magnesium salicylate) were introduced into the system, the frequency remained unchanged in the initial several minutes and then rapidly decreased by 4Hz for iodipamide and increased by 4Hz for magnesium salicylate. This phenomenon revealed site I-binding drugs competitively bound to HSA against bilirubin and displaced the pre-bound bilirubin. The results demonstrate FIA-QCM can be a valid approach for monitoring the dynamic interaction between drugs and HSA in real time further identifying drug-binding sites without the need of labels.  相似文献   

17.
3'-Azido-3'-deoxythymidine (AZT) is the first clinically effective drug for the treatment of human immunodeficiency virus infection. The drug interaction with human serum albumin (HSA) has been an important component in understanding its mechanism of action, especially in drug distribution and in drug-drug interaction on HSA in the case of multi-drug therapy. We present here crystal structures of a ternary HSA-Myr-AZT complex and a quaternary HSA-Myr-AZT-SAL complex (Myr, myristate; SAL, salicylic acid). From this study, a new drug binding subsite on HSA Sudlow site 1 was identified. The presence of fatty acid is needed for the creation of this subsite due to fatty acid induced conformational changes of HSA. Thus, the Sudlow site 1 of HSA can be divided into three non-overlapped subsites: a SAL subsite, an indomethacin subsite and an AZT subsite. Binding of a drug to HSA often influences simultaneous binding of other drugs. From the HSA-Myr-AZT-SAL complex structure, we observed the coexistence of two drugs (AZT and SAL) in Sudlow site 1 and the competition between these two drugs in subdomain IB. These results provide new structural information on HSA-drug interaction and drug-drug interaction on HSA.  相似文献   

18.
The tetrahydrochloride salt of astaxanthin di-L-lysinate (lys(2)AST) is a highly water-dispersible astaxanthin-amino acid conjugate, with an aqueous dispersibility of > or = 181.6 mg/mL. The statistical mixture of stereoisomers has been well characterized as an aqueous-phase superoxide anion scavenger, effective at micromolar (microM) concentrations. In the current study, the aqueous aggregation behavior and in vitro plasma protein binding [with fatty-acid-free human serum albumin (HSA) and alpha(1)-acid glycoprotein (AGP)] were investigated with a suite of techniques, including circular dichroism (CD) and UV-vis spectroscopy, ultrafiltration, competitive ligand displacement, and fluorescence quenching. Induced CD bands obtained in Ringer buffer solution of HSA demonstrated high affinity monomeric binding of the compound at low ligand per protein (L/P) ratios (in aqueous solution alone the carotenoid molecules formed card-pack aggregates). The binding constant ( approximately 10(6)M(-1)) and the binding stoichiometry (approximately 0.2 per albumin molecule) were calculated from CD titration data. CD displacement and ultrafiltration experiments performed with marker ligands of HSA indicated that the ligand binding occurred at a site distinct from the main drug binding sites of HSA (i.e., Sites I and II). At intermediate L/P ratios, both monomeric and aggregated ("chirally complexed") binding occurred simultaneously at distinct sites of the protein. At high L/P ratios, chiral complexation predominantly occurred on the asymmetric protein template. The tentative location of the chirally-complexed aggregation on the HSA template was identified as the large interdomain cleft of HSA, where carotenoid derivatives have been found to bind previously. Only weak binding to AGP was observed. These results suggest that parenteral use of this highly potent, water-dispersible astaxanthin-amino acid conjugate will result in plasma protein association, and plasma protein binding at sites unlikely to displace fatty acids and drugs bound at well-characterized binding sites on the albumin molecule.  相似文献   

19.
Human serum albumin (HSA) is the most abundant plasma protein in the human body with a plasma concentration of 0.6mM. HSA plays an important role in drug transport and metabolism. Enzymatic activity of HSA on different substrates or drugs has been studied and documented. The structural mechanism of this activity, however, is unknown. In this study, we have determined the crystal structures of HSA-myristate in a complex of aspirin and of salicylic acid, respectively. The crystal structure of HSA-myristate-aspirin illustrates that aspirin transfers acetyl group to Lys199 and is hydrolyzed into salicylic acid by HSA. The hydrolysis product, salicylic acid, remains bound to HSA at a similar location, but it shows a very different orientation when compared with the salicylic acid in the HSA-myristate-salicylic acid ternary complex. These results not only provide the structural evidence of esterase activity of HSA, and demonstrate the conformational plasticity of HSA on drug binding, but also may provide structural information for the modulation of HSA-drug interaction by computational approach based on HSA-drug structure.  相似文献   

20.
Bovine, human and rat serum albumins were defatted and palmitic acid, oleic acid and lauric acid added in various molar ratios. The binding of L-tryptophan to these albumins was measured at 20 degrees C in a 0.138 M salt solution at pH 7.4, by using an ultrafiltration technique, and analysed in terms of n, the number of available tryptophan-binding sites per albumin molecule, with apparent association constant, k. 2. n and k were 0.90 and 2.3x10(-4)M(minus-1) respectively for defatted bovine serum albumin and 0.87 and 9.7x10(-3)M(-minus-1) for human albumin. Addition of palmitic acid did not decrease n until the molar ratio, fatty acid/bovine albumin, approached and exceeded 2. The decrease in k was small and progressive. In contrast, lauric caused a marked decrease in n and k at ratios as low as 0.5. A similar distinction between the effects on n of palmitic acid and oleic acid and those of lauric acid was seen for human albumin. k for human albumin was not significantly affected by fatty acids under the conditions studied. 3. It is concluded that primary long-chain fatty acid sites interact only weakly with the tryptophan site on albumin and that inhibition of tryptophan binding occurs when secondary long-chain sites are occupied. Primary medium-chain fatty acid sites are distinct from primary long-chain sites but may be grouped with secondary long-chain sites. 4. The relationship between free and bound tryptophan in samples of rat plasma (Stoner et al., 1975) is discussed in terms of a similar but limited study of rat albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号