首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson–Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39–C65 and A39–U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation.  相似文献   

2.
Riboswitches are cis-acting genetic regulatory elements found commonly in bacterial mRNAs that consist of a metabolite-responsive aptamer domain coupled to a regulatory switch. Purine riboswitches respond to intracellular concentrations of either adenine or guanine/hypoxanthine to control gene expression. The aptamer domain of the purine riboswitch contains a pyrimidine residue (Y74) that forms a Watson-Crick base-pairing interaction with the bound purine nucleobase ligand that discriminates between adenine and guanine. We sought to understand the structural basis of this specificity and the mechanism of ligand recognition by the purine riboswitch. Here, we present the 2,6-diaminopurine-bound structure of a C74U mutant of the xpt-pbuX guanine riboswitch, along with a detailed thermodynamic and kinetic analysis of nucleobase recognition by both the native and mutant riboswitches. These studies demonstrate clearly that the pyrimidine at position 74 is the sole determinant of purine riboswitch specificity. In addition, the mutant riboswitch binds adenine and adenine derivatives well compared with the guanine-responsive riboswitch. Under our experimental conditions, 2,6-diaminopurine binds the RNA with DeltaH=-40.3 kcal mol(-1), DeltaS=-97.6 cal mol(-1)K(-1), and DeltaG=-10.73 kcal mol(-1). A kinetic determination of the slow rate (0.15 x 10(5)M(-1)s(-1) and 2.1 x 10(5)mM(-1)s(-1) for 2-aminopurine binding the adenine-responsive mutant riboswitch and 7-deazaguanine-binding guanine riboswitch, respectively) of association under varying experimental conditions allowed us to propose a mechanism for ligand recognition by the purine riboswitch. A conformationally dynamic unliganded state for the binding pocket is stabilized first by the Watson-Crick base pairing between the ligand and Y74, and by the subsequent ordering of the J2/3 loop, enclosing the ligand within the three-way junction.  相似文献   

3.
4.
Structured mRNA elements called riboswitches control gene expression by binding to small metabolites. Over a dozen riboswitch classes have been characterized that target a broad range of molecules and vary widely in size and secondary structure. Four of the known riboswitch classes recognize purines or modified purines. Three of these classes are closely related in conserved sequence and secondary structure, but members of these classes selectively recognize guanine, adenine or 2'-deoxyguanosine. Members of the fourth riboswitch class adopt a distinct structure to form a selective binding pocket for the guanine analogue preQ(1) (7-aminomethyl-7-deazaguanine). All four classes of purine-sensing riboswitches are most likely to recognize their respective metabolites by utilizing a riboswitch residue to make a canonical Watson-Crick base-pair with the ligand. This review will provide a summary of the purine-sensing riboswitches, as well as discuss the complex functions and applications of these RNAs.  相似文献   

5.
Ligand recognition determinants of guanine riboswitches   总被引:1,自引:0,他引:1  
  相似文献   

6.
The adenine riboswitch aptamer, the A box, positively regulates gene expression upon adenine binding. To provide insight into structure-function relationships, important for the adenine riboswitch aptamer, we have created alignments for six aptamer sequences that reveal the core requirements. In addition, 2-aminopurine (2AP) binding studies have been used to test the consensus sequence derived from the alignment. Overall, the consensus secondary structure is consistent with 2AP binding studies. However, a position in the core, previously identified as variable, shows restriction in nucleotide sequence. Furthermore, this restriction is found to be related with the ligand specificity of the riboswitch. The implications of this relationship for the riboswitch gene regulation mechanism are discussed.  相似文献   

7.
Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.  相似文献   

8.
9.
Riboswitch, a bacterial regulatory RNA consists of an aptamer (specific ligand binding unit) and an expression platform (gene expression modulation unit), which act as a potential drug target as it regulates critical genes. Therefore, it is of interest to glean information on the binding of c-di-GMP ligand to mutated conserved G20 and C92 residues of cyclic diguanosine monophosphate I (c-di-GMP I) riboswitch using molecular dynamics simulation. The result shows that the binding energy of wild/native type riboswitch-ligand complex (3IRW) is lower than the mutant complexes suggesting that the binding affinity for c-di-GMP ligand decreases in case of mutant riboswitches. The hydrogen bonding interactions analysis also showed a high number of hydrogen bonds formation in the wild type riboswitch-ligand complex as compared to the mutant complexes illustrating stronger interaction of ligand to wild type riboswitch than the mutants. The simulation result shows that the mutations affected riboswitch-ligand interactions. The residues G14, G21, C46, A47, and U92 were identified as the key residues which contributed effectively to the binding of c-di-GMP I riboswitch with the natural ligand.  相似文献   

10.
Riboswitches are mRNA-based molecules capable of controlling the expression of genes. They undergo conformational changes upon ligand binding, and as a result, they inhibit or promote the expression of the associated gene. The close connection between structural rearrangement and function makes a detailed knowledge of the molecular interactions an important step to understand the riboswitch mechanism and efficiency. We have performed all-atom molecular dynamics simulations of the adenine-sensing add A-riboswitch to study the breaking of the kissing loop, one key tertiary element in the aptamer structure. We investigated the aptamer domain of the add A-riboswitch in complex with its cognate ligand and in the absence of the ligand. The opening of the hairpins was simulated using umbrella sampling using the distance between two loops as the reaction coordinate. A two-step process was observed in all the simulated systems. First, a general loss of stacking and hydrogen bond interactions is seen. The last interactions that break are the two base pairs G37-C61 and G38-C60, but the break does not affect the energy profile, indicating their pivotal role in the tertiary structure formation but not in the structure stabilization. The junction area is partially organized before the kissing loop formation and residue A24 anchors together the loop helices. Moreover, when the distance between the loops is increased, one of the hairpins showed more flexibility by changing its orientation in the structure, while the other conserved its coaxial arrangement with the rest of the structure.  相似文献   

11.
12.
We present gas phase quantum chemical studies on the metabolite binding interactions in two important purine riboswitches, the adenine and guanine riboswitches, at the B3LYP/6-31G(d,p) level of theory. In order to gain insights into the strucutral basis of their discriminative abilities of regulating gene expression, the structural properties and binding energies for the gas phase optimized geometries of the metabolite bound binding pocket are analyzed and compared with their respective crystal geometries. Kitaura-Morokuma analysis has been carried out to calculate and decompose the interaction energy into various components. NBO and AIM analysis has been carried out to understand the strength and nature of binding of the individual aptamer bases with their respective purine metabolites. The Y74 base, U in case of adenine riboswitch and C in case of guanine riboswitch constitutes the only differentiating element between the two binding pockets. As expected, with W:W cis G:C74 interaction contributing more than 50% of the total binding energy, the interaction energy for metabolite binding as calculated for guanine (-46.43 Kcal/mol) is nearly double compared to the corresponding value for that of adenine (-24.73 Kcal/mol) in the crystal context. Variations in the optimized geometries for different models and comparison of relative contribution to metabolite binding involving four conserved bases reveal the possible role of U47:U51 W:H trans pair in the conformational transition of the riboswitch from the metabolite free to metabolite bound state. Our results are also indicative of significant contributions from stacking and magnesium ion interactions toward cooperativity effects in metabolite recognition.  相似文献   

13.
The kink turn (k-turn) is a frequently occurring motif, comprising a bulge followed by G•A and A•G pairs that introduces a sharp axial bend in duplex RNA. Natural k-turn sequences exhibit significant departures from the consensus, including the A•G pairs that form critical interactions stabilizing the core of the structure. Kt-23 found in the small ribosomal subunit differs from the consensus in many organisms, particularly in the second A•G pair distal to the bulge (2b•2n). Analysis of many Kt-23 sequences shows that the frequency of occurrence at the 2n position (i.e., on the nonbulged strand, normally G in standard k-turns) is U>C>G>A. Less than 1% of sequences have A at the 2n position, but one such example occurs in Thelohania solenopsae Kt-23. This sequence folds only weakly in the presence of Mg2+ ions but is induced to fold normally by the binding of L7Ae protein. Introduction of this sequence into the SAM-I riboswitch resulted in normal binding of SAM ligand, indicating that tertiary RNA contacts have resulted in k-turn folding. X-ray crystallography shows that the T. solenopsae Kt-23 adopts a standard k-turn geometry, making the key, conserved hydrogen bonds in the core and orienting the 1n (of the bulge-proximal A•G pair) and 2b adenine nucleobases in position facing the opposing minor groove. The 2b and 2n adenine nucleobases are not directly hydrogen bonded, but each makes hydrogen bonds to their opposing strands.  相似文献   

14.
15.
Riboswitches are RNA-based genetic control elements that function via a conformational transition mechanism when a specific target molecule binds to its binding pocket. To facilitate an atomic detail interpretation of experimental investigations on the role of the adenine ligand on the conformational properties and kinetics of folding of the add adenine riboswitch, we performed molecular dynamics simulations in both the presence and the absence of the ligand. In the absence of ligand, structural deviations were observed in the J23 junction and the P1 stem. Destabilization of the P1 stem in the absence of ligand involves the loss of direct stabilizing interactions with the ligand, with additional contributions from the J23 junction region. The J23 junction of the riboswitch is found to be more flexible, and the tertiary contacts among the junction regions are altered in the absence of the adenine ligand; results suggest that the adenine ligand associates and dissociates from the riboswitch in the vicinity of J23. Good agreement was obtained with the experimental data with the results indicating dynamic behavior of the adenine ligand on the nanosecond time scale to be associated with the dynamic behavior of hydrogen bonding with the riboswitch. Results also predict that direct interactions of the adenine ligand with U74 of the riboswitch are not essential for stable binding although it is crucial for its recognition. The possibility of methodological artifacts and force-field inaccuracies impacting the present observations was checked by additional molecular dynamics simulations in the presence of 2,6-diaminopurine and in the crystal environment.  相似文献   

16.
Riboswitches regulate gene expression via ligand binding to an aptamer domain which induces conformational changes in a regulatory expression platform. By unfolding and refolding single add adenine riboswitch molecules in an optical trap, an integrated picture of the folding was developed and related to the regulatory mechanism. Force-extension curves (FECs) and constant-force folding trajectories measured on the aptamer alone revealed multiple partially-folded states, including several misfolded states not on the native folding pathway. All states were correlated to key structural components and interactions within hierarchical folding pathways. FECs of the full-length riboswitch revealed that the thermodynamically stable conformation switches upon ligand binding from a structure repressing translation to one permitting it. Along with rapid equilibration of the two structures in the absence of adenine, these results support a thermodynamically-controlled regulatory mechanism, in contrast with the kinetic control of the closely-related pbuE adenine riboswitch. Comparison of the folding of these riboswitches revealed many similarities arising from shared structural features but also essential differences related to their different regulatory mechanisms.  相似文献   

17.
18.
19.
The specific binding of ligands is the first step of gene expression or translation regulation by riboswitches. However, understanding the mechanism of the specific binding is still difficult because the tertiary structures of the riboswitch aptamers are available almost only for ligand-bound state at present. In this paper we hope to give some insights into this problem through the studies of the role of ligand-aptamer interaction in the structural organization of add A-riboswitch aptamer, based on the crystal structure of the ligand-bound aptamer. We use all-atom molecular dynamics to simulate the behaviors of the aptamer in ligand-bound, free and mutated states by Amber force field. The results show that the correct paring of the ligand adenine with the nucleotide U74 in the binding pocket is crucial to stabilizing the conformations of the ligand-bound aptamer, especially the helix P1 connecting the expression platform. Our results also suggest that both the nucleotide U74 and U51 may be the key sites of the ligand recognition but the former has much higher probability as the initial docking site. This is in agreement with previous experimental results.  相似文献   

20.
Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号