首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We developed primers for eight polymorphic microsatellite loci isolated from the collared pika, Ochotona collaris, and also tested nine loci previously developed for the American pika, O. princeps, for use in O. collaris. Forty-six individuals from an O. collaris population in the southern Yukon were genotyped using all 17 loci. The average number of alleles per locus was six and the average observed heterozygosity was 0.59. All loci were tested for use in four Asian pika species and all but two loci amplified reliably in these species.  相似文献   

2.
The genetic consequences of climate-driven range fluctuation during the Pleistocene have been well studied for temperate species, but cold-adapted (e.g., alpine, arctic) species that may have responded uniquely to past climatic events have received less attention. In particular, we have no a priori expectation for long-term evolutionary consequences of elevation shifts into and out of sky islands by species adapted to alpine habitats. Here, we examined the influence of elevation shifts on genetic differentiation and historical demography in an alpine specialist, the American pika ( Ochotona princeps ). Pika populations are divided into five genetic lineages that evolved in association with separate mountain systems, rather than lineages that reflect individual sky islands. This suggests a role for glacial-period elevation shifts in promoting gene flow among high-elevation populations and maintaining regional cohesion of genetic lineages. We detected a signature of recent demographic decline in all lineages, consistent with the expectation that Holocene climate warming has driven range retraction in southern lineages, but unexpected for northern populations that presumably represent postglacial expansion. An ecological niche model of past and future pika distributions highlights the influence of climate on species range and indicates that the distribution of genetic diversity may change dramatically with continued climate warming.  相似文献   

3.
Investigations of intercontinental dispersal between Asia and North America reveal complex patterns of geographic expansion, retraction and isolation, yet historical reconstructions are largely limited by the depth of the record that is retained in patterns of extant diversity. Parasites offer a tool for recovering deep historical insights about the biosphere, improving the resolution of past community-level interactions. We explored biogeographic hypotheses regarding the history of dispersal across Beringia, the region intermittently linking Asia and North America, through large-scale multi-locus phylogenetic analyses of the genus Schizorchis, an assemblage of host-specific cestodes in pikas (Lagomorpha: Ochotonidae). Our genetic data support palaeontological evidence for two separate geographic expansions into North America by Ochotona in the late Tertiary, a history that genomic evidence from extant pikas does not record. Pikas descending from the first colonization of Miocene age persisted into the Pliocene, subsequently coming into contact with a second wave of Nearctic colonists from Eurasia before going extinct. Spatial and temporal overlap of historically independent pika populations provided a window for host colonization, allowing persistence of an early parasite lineage in the contemporary fauna following the extinction of its ancestral hosts. Empirical evidence for ancient ‘ghost assemblages'' of hosts and parasites demonstrates how complex mosaic faunas are assembled in the biosphere through episodes of faunal mixing encompassing parasite lineages across deep and shallow time.  相似文献   

4.
We recovered 26 genetically distinct avian malaria parasite lineages, based on cytochrome b sequences, from a broad survey of terrestrial avifauna of the Lesser Antilles. Here we describe their distributions across host species within a regional biogeographic context. Most parasite lineages were recovered from a few closely related host species. Specialization on one host species and distribution across many hosts were both rare. Geographic patterns of parasite lineages indicated limited dispersal and frequent local extinction. The central islands of the archipelago share similar parasite lineages and patterns of infection. However, the peripheral islands harbor well-differentiated parasite communities, indicating long periods of isolation. Nonetheless, 20 of 26 parasite lineages were recovered from at least one of three other geographic regions, the Greater Antilles, North America, and South America, suggesting rapid dispersal relative to rate of differentiation. Six parasite lineages were restricted to the Lesser Antilles, primarily to endemic host species. Host differences between populations of the same parasite lineage suggest that host preference may evolve more rapidly than mitochondrial gene sequences. Taken together, distributions of avian malarial parasites reveal evidence of coevolution, host switching, extinction, and periodic recolonization events resulting in ecologically dynamic as well as evolutionarily stable patterns of infection.  相似文献   

5.
人工饲养条件下高原鼠兔生长和发育的初步研究   总被引:10,自引:7,他引:3  
叶润蓉  梁俊勋 《兽类学报》1989,9(2):110-118
本文研究了人工饲养条件下高原鼠兔的生长发育情况,并和其他种鼠兔的生长作了比较。室内高原鼠兔比野外的生长快,人工饲养的阿富汗鼠兔和北美鼠兔生长期短,成熟早。  相似文献   

6.
? Premise of the study: The American bulb-bearing Oxalis (Oxalidaceae) have diverse heterostylous breeding systems and are distributed in mountainous areas from Patagonia to the northeastern United States. To study the evolutionary processes leading to this diversity, we constructed the first molecular phylogeny for the American bulb-bearing Oxalis and used it to infer biogeographic history and breeding system evolution. ? Methods: We used DNA sequence data (nuclear ribosomal internal transcribed spacer, trnL-trnL-trnF, trnT-trnL, and psbJ-petA) to infer phylogenetic history via parsimony, likelihood, and Bayesian analyses. We used Bayes Multistate to infer ancestral geographic distributions at well-supported nodes of the phylogeny. The Shimodaira-Hasegawa (SH) test distinguished among hypotheses of single or multiple transitions from South America to North America, and tristyly to distyly. ? Key results: The American bulb-bearing Oxalis include sampled members of sections Ionoxalis and Pseudobulbosae and are derived from a larger clade that includes members of sections Palmatifoliae, Articulatae, and the African species. The American bulb-bearing Oxalis comprise two clades: one distributed in SE South America and the other in the Andes and North America. An SH test supports multiple dispersals to North America. Most sampled distylous species form a single clade, but at least two other independent distylous lineages are supported by the topologies and SH tests. ? Conclusions: Phylogenetic results suggest the American bulb-bearing Oxalis originated in southern South America, dispersed repeatedly to North America, and had multiple transitions from tristyly to distyly. This study adds to our understanding of biogeographic history and breeding system evolution and provides a foundation for more precise inferences about the study group.  相似文献   

7.
Even after decades of investigation using multiple sources of evidence, the natural histories of some species remain unclear (i.e. cryptogenic). A key example is Littorina littorea , the most abundant intertidal snail in northeastern North America. Native to Europe, the snail's ecological history in North America has been debated for over 100 years with no definitive resolution. To resolve its cryptogenic status, we used molecular genetics from a novel combination of the snail and a highly associated trematode parasite, Cryptocotyle lingua . Based on mitochondrial sequences of 370 L. littorea and 196 C. lingua individuals, our results demonstrate a significant reduction in genetic diversity in North America vs. Europe, North American haplotypes nested within European haplotypes, and mean divergence estimates of ~500 years ago from Europe for both host and parasite — thus supporting a recent introduction of both host and parasite to North America from Europe. Our study therefore resolves not only a specific cryptogenic history, but it also demonstrates the success of our approach generally and could be used in resolving difficult invasion histories worldwide.  相似文献   

8.
Investigating patterns and processes of parasite diversification over ancient geological periods should involve comparisons of host and parasite phylogenies in a biogeographic context. It has been shown previously that the geographical distribution of host-specific parasites of sarcopterygians was guided, from Palaeozoic to Cainozoic times, mostly by evolution and diversification of their freshwater hosts. Here, we propose phylogenies of neobatrachian frogs and their specific parasites (Platyhelminthes, Monogenea) to investigate coevolutionary processes and historical biogeography of polystomes and further discuss all the possible assumptions that may account for the early evolution of these parasites. Phylogenetic analyses of concatenated rRNA nuclear genes (18S and partial 28S) supplemented by cophylogenetic and biogeographic vicariance analyses reveal four main parasite lineages that can be ascribed to centers of diversity, namely Australia, India, Africa, and South America. In addition, the relationships among these biogeographical monophyletic groups, substantiated by molecular dating, reflect sequential origins during the breakup of Gondwana. The Australian polystome lineage may have been isolated during the first stages of the breakup, whereas the Indian lineage would have arisen after the complete separation of western and eastern Gondwanan components. Next, polystomes would have codiverged with hyloid sensu stricto and ranoid frog lineages before the completion of South American and African plate separation. Ultimately, they would have undergone an extensive diversification in South America when their ancestral host families diversified. Therefore, the presence of polystome parasites in specific anuran host clades and in discrete geographic areas reveals the importance of biogeographic vicariance in diversification processes and supports the occurrence and radiation of amphibians over ancient and recent geological periods.  相似文献   

9.
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance–decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host–parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.  相似文献   

10.
Identifying the genetic structure of a species and the factors that drive it is an important first step in modern population management, in part because populations evolving from separate ancestral sources may possess potentially different characteristics. This is especially true for climate‐sensitive species such as pikas, where the delimitation of distinct genetic units and the characterization of population responses to contemporary and historical environmental pressures are of particular interest. We combined a restriction site‐associated DNA sequencing (RADSeq) data set containing 4156 single nucleotide polymorphisms with ecological niche models (ENMs) of present and past habitat suitability to characterize population composition and evaluate the effects of historical range shifts, contemporary climates and landscape factors on gene flow in Collared Pikas, which are found in Alaska and adjacent regions of northwestern Canada and are the lesser‐studied of North America's two pika species. The results suggest that contemporary environmental factors contribute little to current population connectivity. Instead, genetic diversity is strongly shaped by the presence of three ancestral lineages isolated during the Pleistocene (~148 and 52 kya). Based on ENMs and genetic data, populations originating from a northern refugium experienced longer‐term stability, whereas both southern lineages underwent population expansion – contradicting the southern stability and northern expansion patterns seen in many other taxa. Current populations are comparable with respect to generally low diversity within populations and little‐to‐no recent admixture. The predominance of divergent histories structuring populations implies that if we are to understand and manage pika populations, we must specifically assess and accurately account for the forces underlying genetic similarity.  相似文献   

11.
Beringia (eastern Asia, Alaska, northwest Canada) has been a land‐bridge dispersal route between Asia and North America intermittently since the Mesozoic Era. The Quaternary, the most recent period of exchange, is characterized by large, geologically rapid climate fluctuations and sea‐level changes that alternately expose and inundate the land‐bridge region. Insights into how Quaternary land‐bridge geography has controlled species exchange and assembly of the North American flora comes from focusing on a restricted community with narrow ecological tolerances: species that are today restricted to isolated steppe habitats (dry grasslands) in the Subarctic. We evaluated (i) potential controls over current spatial distributions of steppe plants and their pollinators in Alaska and Yukon and (ii) their ecological distributions in relation to potential biogeographic histories. Taxa present in North America that are disjunct from Asia tended to have larger altitudinal ranges (tolerating colder temperatures) than taxa disjunct from farther south in North America, which were largely restricted to the warmest, lowest‐elevation sites. Ecological findings support the following biogeographic scenarios. Migration from Asia via the land‐bridge occurred during Quaternary glacial periods when conditions were colder and drier than today. While a corridor for migration of cold‐tolerant species of cold steppe and tundra, the land bridge acted as a filter that excluded warmth‐demanding species. Migration from North America occurred under warm, dry interglacial conditions; thermophilous North American disjuncts taking this route may have long histories in Beringia, or they may have migrated recently during the relatively warm and dry early Holocene, when forest cover was incomplete.  相似文献   

12.
Ceratocystis fimbriata is a widely distributed, plant pathogenic fungus that causes wilts and cankers on many woody hosts. Earlier phylogenetic analyses of DNA sequences revealed three geographic clades within the C. fimbriata complex that are centered respectively in North America, Latin America and Asia. This study looked for cryptic species within the North American clade. The internal transcribed spacer regions (ITS) of the rDNA were sequenced, and phylogenetic analysis indicated that most isolates from the North American clade group into four host-associated lineages, referred to as the aspen, hickory, oak and cherry lineages, which were isolated primarily from wounds or diseased trees of Populus, Carya, Quercus and Prunus, respectively. A single isolate collected from P. serotina in Wisconsin had a unique ITS sequence. Allozyme electromorphs also were highly polymorphic within the North American clade, and the inferred phylogenies from these data were congruent with the ITS-rDNA analyses. In pairing experiments isolates from the aspen, hickory, oak and cherry lineages were interfertile only with other isolates from their respective lineages. Inoculation experiments with isolates of the four host-associated groupings showed strong host specialization by isolates from the aspen and hickory lineages on Populus tremuloides and Carya illinoensis, respectively, but isolates from the oak and cherry lineages did not consistently reveal host specialization. Morphological features distinguish isolates in the North American clade from those of the Latin American clade (including C. fimbriata sensu stricto). Based on the phylogenetic evidence, interfertility, host specialization and morphology, the oak and cherry lineages are recognized as the earlier described C. variospora, the poplar lineage as C. populicola sp. nov., and the hickory lineage as C. caryae sp. nov. A new species associated with the bark beetle Scolytus quadrispinosus on Carya is closely related to C. caryae and is described as C. smalleyi.  相似文献   

13.
Oceanic archipelagos are vulnerable to natural introduction of parasites via migratory birds. Our aim was to characterize the geographic origins of two Plasmodium parasite lineages detected in the Galapagos Islands and in North American breeding bobolinks (Dolichonyx oryzivorus) that regularly stop in Galapagos during migration to their South American overwintering sites. We used samples from a grassland breeding bird assemblage in Nebraska, United States, and parasite DNA sequences from the Galapagos Islands, Ecuador, to compare to global data in a DNA sequence registry. Homologous DNA sequences from parasites detected in bobolinks and more sedentary birds (e.g., brown‐headed cowbirds Molothrus ater, and other co‐occurring bird species resident on the North American breeding grounds) were compared to those recovered in previous studies from global sites. One parasite lineage that matched between Galapagos birds and the migratory bobolink, Plasmodium lineage B, was the most common lineage detected in the global MalAvi database, matching 49 sequences from unique host/site combinations, 41 of which were of South American origin. We did not detect lineage B in brown‐headed cowbirds. The other Galapagos‐bobolink match, Plasmodium lineage C, was identical to two other sequences from birds sampled in California. We detected a close variant of lineage C in brown‐headed cowbirds. Taken together, this pattern suggests that bobolinks became infected with lineage B on the South American end of their migratory range, and with lineage C on the North American breeding grounds. Overall, we detected more parasite lineages in bobolinks than in cowbirds. Galapagos Plasmodium had similar host breadth compared to the non‐Galapagos haemosporidian lineages detected in bobolinks, brown‐headed cowbirds, and other grassland species. This study highlights the utility of global haemosporidian data in the context of migratory bird–parasite connectivity. It is possible that migratory bobolinks bring parasites to the Galapagos and that these parasites originate from different biogeographic regions representing both their breeding and overwintering sites.  相似文献   

14.
Within- and between-group observer variability can confound scientific discovery. If observer variability can be quantified and is addressed, data collected by participants with wide ranges of experience and training can yield more reliable inferences. The American pika (Ochotona princeps) is a mammalian sentinel of climate change that has received consideration for listing under the United States Endangered Species Act. As a result, numerous pika monitoring initiatives have been started throughout the mountains in western North America. Some initiatives employ research teams of biological science technicians (professionals), whereas many rely on networks of citizen scientists, or volunteers, for data collection. To date, few studies have quantified observer variability during pika surveys; none have explored the reliability of professional crews or volunteers. We conducted pika surveys in Glacier National Park, Montana, to quantify observer variability. We investigated observer variability 1) among a crew of professionals, 2) among volunteers, and 3) between professionals and volunteers. Professionals were more consistent at identifying pika signs and estimating potential home ranges and consistently found more pika signs than did the volunteers, with the exception of pika sightings. Estimates of pika occupancy were consistent at each site among volunteers conducting sitting surveys. We suggest that sitting surveys conducted by volunteers can reliably detect pika site occupancy. However, data on population dynamics of pikas (e.g., density) should be collected by professionals. Observer variability analyses of this nature should be common practice for wildlife-resource managers and scientists, especially with observers of varying levels of experience and motivation. © 2012 The Wildlife Society.  相似文献   

15.
The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e. , represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau. On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister taxa of one steppe dweller and one shrub dweller is very low. These findings support the hypothesis that pikas have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution.  相似文献   

16.
The first steps in the history of South American mammals took place ca. 130 Ma., when the South American plate, still connected to the Antarctic Peninsula, began to drift away from the African-Indian plate. Most of the Mesozoic history of South American mammals is still unknown, and we only have a few enigmatic taxa (i.e., a Jurassic Australosphenida and an Early Cretaceous Prototribosphenida) that pose more evolutionary and biogeographic questions than answers. The best-known Mesozoic, South American land-mammal fossils are from Late Cretaceous Patagonian beds. These fossils represent the last survivors of non- and pre-tribosphenic Pangaean lineages, all of them with varying endemic features: some with few advanced features (e.g., ?Eutriconodonta and “Symmetrodonta”), some very diversified as endemic groups (e.g., ?Docodonta Reigitheriidae), and others representing vicariant types of well known Laurasian Mesozoic lineages (e.g., Gondwanatheria as vicariant of Multituberculata). These endemic mammals lived as relicts (although advanced) of pangeic lineages when a primordial South American continent was still connected to the Antarctic Peninsula and, at the northern extreme, near the North American Plate. By the beginning of the Late Cretaceous, the volcanic and diastrophic processes that finally led to the differentiation of the Caribbean region and Central America built up transient geographic connections that permitted the initiation of an overland inter-American exchange that included, for example, dinosaurian titanosaurs from South America and hadrosaurs from North America. The immigration of other vertebrates followed the same route, for example, polydolopimorphian marsupials. These marsupials were assumed to have differentiated in South America prior to new discoveries from the North American Late Cretaceous. The complete extinction of endemic South American Mesozoic mammals by the Late Cretaceous-Early Paleocene, and the subsequent and in part coetaneous immigration of North American therians, respectively, represent two major moments in the history of South American mammals: a Gondwanan Episode and a South American Episode. The Gondwanan Episode was characterized by non- and pre-tribosphenic mammal lineages that descended from the Pangeic South American stage (but already with a pronounced Gondwanan accent, and wholly extinguished during the Late Cretaceous-Early Paleocene span). The South American Episode, in turn, was characterized only by therian mammals, mostly emigrated from the North American continent and already with a South American accent obtained through isolation. The southernmost extreme of South America (Patagonia) remained connected to the present Antarctic Peninsula at least up until about 30 Ma., and both provided the substratum where the primordial cladogenesis of “South American” mammals occurred. The resulting cladogenesis of South American therian mammals followed Gould's motto: early experimentation, later standardization. That is to say, early cladogenesis engendered a great variety of taxa with scarce morphological differentiation. After this early cladogenesis (Late Eocene-Early Oligocene), the variety of taxa became reduced, but each lineage became clearly recognizable distinctive by a constant morphologic pattern. At the same time, those mammals that underwent the “early experimentation” were part of communities dominated by archaic lineages (e.g., brachydont types among the native “ungulates”), whereas the subsequent communities were dominated by mammals of markedly “modern” stamp (e.g., protohypsodont types among the native “ungulates”). The Gondwanan and South American Episodes were separated by a critical latest Cretaceous-earliest Paleocene hiatus, it is as unknown as it is important in which South American land-mammal communities must have experienced extinction of the Gondwanan mammals and the arrival and radiation of the North American marsupials and placentals (with the probable exception of the xenarthrans, whose biogeographic origin is still unclear).  相似文献   

17.
This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.  相似文献   

18.
Climate and host demographic cycling often shape both parasite genetic diversity and host distributions, processes that transcend a history of strict host–parasite association. We explored host associations and histories based on an evaluation of mitochondrial and nuclear sequences to reveal the underlying history and genetic structure of a pinworm, Rauschtineria eutamii, infecting ten species of western North American chipmunks (Rodentia:Tamias, subgenus Neotamias). Rauschtineria eutamii contains divergent lineages influenced by the diversity of hosts and variation across the complex topography of western North America. We recovered six reciprocally monophyletic R. eutamii mitochondrial clades, largely supported by a multilocus concordance tree, exhibiting divergence levels comparable with intraspecific variation reported for other nematodes. Phylogenetic relationships among pinworm clades suggest that R. eutamii colonized an ancestral lineage of western chipmunks and lineages persisted during historical isolation in diverging Neotamias species or species groups. Pinworm diversification, however, is incongruent and asynchronous relative to host diversification. Secondarily, patterns of shallow divergence were shaped by geography through events of episodic colonization reflecting an interaction of taxon pulses and ecological fitting among assemblages in recurrent sympatry. Pinworms occasionally infect geographically proximal host species; however, host switching may be unstable or ephemeral, as there is no signal of host switching in the deeper history of R. eutamii.  相似文献   

19.
Salmonid proliferative kidney disease (PKD) is caused by the myxozoan Tetracapsuloides bryosalmonae. Given the serious and apparently growing impact of PKD on farmed and wild salmonids, we undertook a phylogeographic study to gain insights into the history of genealogical lineages of T. bryosalmonae in Europe and North America, and to determine if the global expansion of rainbow trout farming has spread the disease. Phylogenetic analyses of internal transcribed spacer 1 sequences revealed a clade composed of all North American sequences plus a subset of Italian and French sequences. High genetic diversity in North America and the absence of genotypes diagnostic of the North American clade in the rest of Europe imply that southern Europe was colonized by immigration from North America; however, sequence divergence suggests that this colonization substantially pre-dated fisheries activities. Furthermore, the lack of southern European lineages in the rest of Europe, despite widespread rainbow trout farming, indicates that T. bryosalmonae is not transported through fisheries activities. This result strikingly contrasts with the commonness of fisheries-related introductions of other pathogens and parasites and indicates that fishes may be dead-end hosts. Our results also demonstrate that European strains of T. bryosalmonae infect and induce PKD in rainbow trout introduced to Europe.  相似文献   

20.
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non‐native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号