首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the Arabidopsis CGS1 gene, encoding the first committed enzyme of methionine biosynthesis, is feedback-regulated in response to S-adenosyl-L-methionine (AdoMet) at the mRNA level. This regulation is first preceded by temporal arrest of CGS1 translation elongation at the Ser-94 codon. AdoMet is specifically required for this translation arrest, although the mechanism by which AdoMet acts with the CGS1 nascent peptide remained elusive. We report here that the nascent peptide of CGS1 is induced to form a compact conformation within the exit tunnel of the arrested ribosome in an AdoMet-dependent manner. Cysteine residues introduced into CGS1 nascent peptide showed reduced ability to react with polyethyleneglycol maleimide in the presence of AdoMet, consistent with a shift into the ribosomal exit tunnel. Methylation protection and UV cross-link assays of 28 S rRNA revealed that induced compaction of nascent peptide is associated with specific changes in methylation protection and UV cross-link patterns in the exit tunnel wall. A 14-residue stretch of amino acid sequence, termed the MTO1 region, has been shown to act in cis for CGS1 translation arrest and mRNA degradation. This regulation is lost in the presence of mto1 mutations, which cause single amino acid alterations within MTO1. In this study, both the induced peptide compaction and exit tunnel change were found to be disrupted by mto1 mutations. These results suggest that the MTO1 region participates in the AdoMet-induced arrest of CGS1 translation by mediating changes of the nascent peptide and the exit tunnel wall.  相似文献   

2.
3.
Expression of the Arabidopsis CGS1 gene that codes for cystathionine gamma-synthase is feedback-regulated at the step of mRNA degradation in response to S-adenosyl-L-methionine (AdoMet). This regulation occurs during translation and involves AdoMet-induced temporal translation arrest prior to the mRNA degradation. Here, we have identified multiple intermediates of CGS1 mRNA degradation with different 5' ends that are separated by approximately 30 nucleotides. Longer intermediates were found to be produced as the number of ribosomes loaded on mRNA was increased. Sucrose density gradient centrifugation experiments showed that the shortest mRNA degradation intermediate was associated with monosomes, whereas longer degradation intermediates were associated with multiple ribosomes. Immunoblot analyses revealed a ladder of premature polypeptides whose molecular weights corresponded to products of ribosomes in a stalled stack. An increase in smaller premature polypeptides was observed as the number of ribosomes loaded on mRNA increased. These results show that AdoMet induces the stacking of ribosomes on CGS1 mRNA and that multiple mRNA degradation sites probably correspond to each stacked ribosome.  相似文献   

4.
5.
6.
7.
With the aim of increasing the methionine level in alfalfa (Medicago sativa L.) and thus improving its nutritional quality, we produced transgenic alfalfa plants that expressed the Arabidopsis cystathionine gamma-synthase (AtCGS), the enzyme that controls the synthesis of the first intermediate metabolite in the methionine pathway. The AtCGS cDNA was driven by the Arabidopsis rubisco small subunit promoter to obtain expression in leaves. Thirty transgenic plants were examined for the transgene protein expression, and four lines with a high expression level were selected for further work. In these lines, the contents of methionine, S-methylmethionine (SMM), and methionine incorporated into the water-soluble protein fraction increased up to 32-fold, 19-fold, and 2.2-fold, respectively, compared with that in wild-type plants. Notably, in these four transgenic lines, the levels of free cysteine (the sulphur donor for methionine synthesis), glutathione (the cysteine storage and transport form), and protein-bound cysteine increased up to 2.6-fold, 5.5-fold, and 2.3-fold, respectively, relative to that in wild-type plants. As the transgenic alfalfa plants over-expressing AtCGS had significantly higher levels of both soluble and protein-bound methionine and cysteine, they may represent a model and target system for improving the nutritional quality of forage crops.  相似文献   

8.
9.
10.
The methionine (Met) cycle contributes to sulfur metabolism through the conversion of methylthioadenosine (MTA) to Met at the expense of ATP. MTA is released as a by-product of ethylene synthesis from S-adenosylmethionine (AdoMet). Disruption of the Met cycle in the Arabidopsis mtk mutant resulted in an imbalance of AdoMet homeostasis at sulfur-limiting conditions, irrespective of the sulfur source supplied to the plants. At a low concentration of 100 mum sulfate, the mtk mutant had reduced AdoMet levels and growth was retarded as compared with wild type. An elevated production of ethylene was measured in seedlings of the ethylene-overproducing eto3 mutant. When Met cycle knockout and ethylene overproduction were combined in the mtk/eto3 double mutant, a reduced capacity for ethylene synthesis was observed in seedlings. Even though mature eto3 plants did not produce elevated ethylene levels, and AdoMet homeostasis in eto3 plants did not differ from that in wild type, shoot growth was severely retarded. The mtk/eto3 double mutant displayed a metabolic plant phenotype that was similar to mtk with reduced AdoMet levels at sulfur-limiting conditions. We conclude from our data that the Met cycle contributes to the maintenance of AdoMet homeostasis, especially when de novo AdoMet synthesis is limited. Our data further showed that the Met cycle is required to sustain high rates of ethylene synthesis. Expression of the Met cycle genes AtMTN1, AtMTN2, AtMTK, AtARD1, AtARD2, AtARD3 and AtARD4 was not regulated by ethylene. This result is in contrast to that found in rice where OsARD1 and OsMTK are induced in response to ethylene. We hypothesize that the regulation of the Met cycle by ethylene may be restricted to plants that naturally produce high quantities of ethylene for a prolonged period of time.  相似文献   

11.
12.
13.
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein known to contain the unusual amino acid hypusine. It is a highly conserved protein found in all eukaryotic organisms. Although originally identified as a translation initiation factor, recent studies suggest that eIF5A is mainly involved in translation elongation, mRNA turnover and decay, cell proliferation, and programmed cell death. However, the precise cellular function of eIF5A remains largely unknown, especially in plants. Here, we report the identification and characterization of RceIF5A from Rosa chinensis. RceIF5A expression is up-regulated in Rosa chinensis under high temperature, and oxidative and osmotic stress conditions. We produced transgenic Arabidopsis that constitutively enhanced or suppressed expression of RceIF5A. The RceIF5A over-expression plants exhibited increased resistance to heat, and oxidative and osmotic stresses, while the suppressed expression plants (three AteIF5A isoforms in Arabidopsis were down-regulated) showed more susceptibility to these stresses. These results reveal a new physiological role for eIF5A in plants and contribute to the elucidation of the molecular mechanisms involved in the stress response pathway.  相似文献   

14.
15.
This report describes the characterisation of ATHB16, a novel Arabidopsis thaliana homeobox gene, which encodes a homeodomain-leucine zipper class I (HDZip I) protein. We demonstrate that ATHB16 functions as a growth regulator, potentially as a component in the light-sensing mechanism of the plant. Endogenous ATHB16 mRNA was detected in all organs of Arabidopsis, at highest abundance in rosette leaves. Reduced levels of ATHB16 expression in transgenic Arabidopsis plants caused an increase in leaf cell expansion and consequently an increased size of the leaves, whereas leaf shape was unaffected. Transgenic plants with increased ATHB16 mRNA levels developed leaves that were smaller than wild-type leaves. Therefore, we suggest ATHB16 to act as a negative regulator of leaf cell expansion. Furthermore, the flowering time response to photoperiod was increased in plants with reduced ATHB16 levels but reduced in plants with elevated ATHB16 levels, indicating that ATHB16 has an additional role as a suppressor of the flowering time sensitivity to photoperiod in wild-type Arabidopsis. As deduced from the response of transgenic plants with altered levels of ATHB16 expression in hypocotyl elongation assays, the gene may act to regulate plant development as a mediator of a blue light response.  相似文献   

16.
A cell-free protein-synthesizing system has been prepared from Saccharomyces cerevisiae by differential centrifugation of lysed spheroplasts. The preparation, a modified 100,000 x g supernatant fraction, contains ribosomes and monosomes, ribosomal subunits, translation factors, and aminoacyl-tRNA synthetases, but no polysomes. After removal of small amounts of remaining mRNA with micrococcal nuclease, protein synthesis is stringently dependent on the addition of mRNA, as well as amino acids and an energy-generating system. The 5'-cap analogue, 7-methylguanosine 5'-phosphate, inhibits translation of several natural mRNAs, but has no effect on chain elongation. Incubation of the polysome-free extract with natural mRNA leads to the formation of protein-synthesizing polysomes and eventually, to the release of protein; the molecular weight of the protein synthesized in the presence of BMV (brome mosaic virus) RNA is consistent with that of BMV coat protein.  相似文献   

17.
18.
19.
20.
RNA processing is an essential gene expression step and plays a crucial role to achieve diversity of gene products in eukaryotes. Various aberrant mRNAs transiently produced during RNA processing reactions are recognized and eliminated by specific quality control systems. It has been demonstrated that these mRNA quality control systems stimulate the degradation of aberrant mRNA to prevent the potentially harmful products derived from aberrant mRNAs. Recent studies on quality control systems induced by abnormal translation elongation and termination have revealed that both aberrant mRNAs and proteins are subjected to rapid degradation. In NonStop Decay (NSD) quality control system, a poly(A) tail of nonstop mRNA is translated and the synthesis of poly-lysine sequence results in translation arrest followed by co-translational degradation of aberrant nonstop protein. In No-Go Decay (NGD) quality control system, the specific amino acid sequences of the nascent polypeptide induce ribosome stalling, and the arrest products are ubiquitinated and rapidly degraded by the proteasome. In Nonfunctional rRNA Decay (NRD) quality control system, aberrant ribosomes composed of nonfunctional ribosomal RNAs are also eliminated when aberrant translation elongation complexes are formed on mRNA. I describe recent progresses on the mechanisms of quality control systems and the relationships between quality control systems. This article is part of a Special issue entitled: RNA Decay mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号