首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Binding of complementary oligonucleotides (ONs) with alpha-sarcin loop region (2638-2682) of Escherichia coli 23S rRNA was investigated. Four of the tested pentadecanucleotides efficiently bound to target sequences with association rate and equilibrium constants approximately 10(3) M(-1)s(-1) and 10(7) M(-1), respectively. ON S5 (CGAGAGGACCGGAGU) complementary to the sequence 2658-2672 displayed the highest affinity to the target. Activation energy for binding of ON S5 was measured to be 11 kcal/mol; this value corresponds to approximately 10% of the calculated enthalpy of the local RNA structure unfolding in the presence of this oligonucleotide. The activation energy value is evidence for the heteroduplex formation to occur via strand displacement pathway; the initiation of heteroduplex formation requires disruption of 1-2 base pairs in RNA hairpin.  相似文献   

2.
The ribonuclease alpha-sarcin exclusively cleaves the phosphodiester bond after G2661 in the 23S rRNA within 50S subunits, thus inactivating the ribosomes. The resulting alpha-fragment is 243 nucleotides long and contains the 3'-end of the 23S rRNA. The specificity is changed dramatically if isolated 23S rRNA is used as substrate. We have shown previously that 23S rRNA is digested completely except for two fragments, one of which is identical to the alpha-fragment. Here we show that the other fragment comprises the 5'-end of 23S rRNA and contains 385 nucleotides. A similar fragment was obtained when isolated 23S rRNA was digested with RNase A (specific for pyrimidines in single strands). It appears that the 5'-domain (equivalent to 5.8S rRNA of eukaryotic ribosomes) as well as the 3'-domain (equivalent to 4.5S rRNA of chloroplast ribosomes) have a compact and defined tertiary structure in isolated 23S rRNA in contrast to the rRNA region in between. Thus, alpha-sarcin is a convenient tool for detecting compact domains in isolated RNA.  相似文献   

3.
Two chloramphenicol resistance mutations were isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Both mutations also confer resistance to 14-atom lactone ring macrolide antibiotics, but they do not confer resistance to 16-atom lactone ring macrolide antibiotics or other inhibitors of the large ribosomal subunit. Classic genetic and recombinant DNA methods were used to map the two mutations to 154-base-pair regions of the 23S RNA genes. DNA sequencing of these regions revealed that chloramphenicol-erythromycin resistance results from a guanine-to-adenine transition at position 2057 of the 23S RNA genes of both independently isolated mutants. These mutations affect a region of 23S RNA strongly implicated in peptidyl transfer and known to interact with a variety of peptidyl transferase inhibitors.  相似文献   

4.
5.
6.
A bacterial strain, designated BzDS03 was isolated from water sample, collected from Dal Lake Srinagar. The strain was characterized by using 16S ribosomal RNA gene and 16S-23S rRNA internal transcribed spacer region sequences. Phylogenetic analysis showed that 16S rRNA sequence of the isolate formed a monophyletic clade with genera Escherichia. The closest phylogenetic relative was Escherichia coli with 99% 16S rRNA gene sequence similarity. The result of Ribosomal database project's classifier tool revealed that the strain BzDS03 belongs to genera Escherichia.16S rRNA sequence of isolate was deposited in GenBank with accession number FJ961336. Further analysis of 16S-23S rRNA sequence of isolate confirms that the identified strain BzDS03 be assigned as the type strain of Escherichia coli with 98% 16S-23S rRNA sequence similarity. The GenBank accession number allotted for 16S-23S rRNA intergenic spacer sequence of isolate is FJ961337.  相似文献   

7.
A comprehensive range of chemical reagents and ribonucleases was employed to investigate the interaction of the antibiotics thiostrepton and micrococcin with the ribosomal protein L11-23S RNA complex and with the 50S subunit. Both antibiotics block processes associated with the ribosomal A-site but differ in their effects on GTP hydrolysis, which is inhibited by thiostrepton and stimulated by micrococcin. The interaction sites of both drugs were shown to occur within the nucleotide sequences A1067-A1098 within the protein L11 binding site on 23S RNA. This region of the ribosome structure is involved in elongation factor-G-dependent GTP hydrolysis and in the stringent response. No effects of drug binding were detected elsewhere in the 23S RNA. In general, the two drugs afforded 23S RNA similar protection from the chemical and nuclease probes in accord with their similar modes of action. One important exception, however, occurred at nucleotide A1067 within a terminal loop where thiostrepton protected the N-1 position while micrococcin rendered it more reactive. This difference correlates with the opposite effects of the two antibiotics on GTPase activity.  相似文献   

8.
Antisense DNAs complementary against various sequences of the alpha-sarcin domain (C2646-G2674) of 23S rRNA from Escherichia coli were hybridized to naked 23S rRNA as well as to 70S ribosomes. Saturation levels of up to 0.4 per 70S ribosome were found, the identical fraction was susceptible to the attack of the RNase alpha-sarcin. The hybridization was specific as demonstrated with RNase H digestion, sequencing the resulting fragments and blockage of the action of alpha-sarcin. The RNase alpha-sarcin seems to approach its cleavage site from the 3' half of the loop of the alpha-sarcin domain. Hybridization is efficiently achieved at 37 degrees C and can extend at least into the 3' strand of the stem of the alpha-sarcin domain. However, the inhibition of alpha-sarcin activity is observed at 30 degrees C but not at 37 degrees C. For a significant inhibition of poly(Phe) synthesis the temperature had to be lowered to 25 degrees C. The results imply that the alpha-sarcin domain changes its conformation during protein synthesis and that the conformational changes may include a melting of the stem of the alpha-sarcin domain.  相似文献   

9.
We report the synthesis of a radioactive, photolabile 2'-O-methyloligoRNA probe, 2258-53/52(SAz)-48, PHONT1, and its exploitation in identifying 23S rRNA nucleotides neighboring the so-called 'P-loop'. The probe is complementary to nt 2248-2258 in Escherichia coli 50S subunits. PHONT1 contains a p-azidophenacyl group attached to a phosphorothioate bridge between the nucleotides complementary to the positions 2252-2253, such that the photogenerated nitrene is maximally 17-19 A from 23S RNA nucleotides G2252 and G2253. PHONT1 binds to the 50S subunit, and photoincorporates within or immediately adjacent to its target site, as well as into several nucleotides falling between G2357 and A2430. The significance of these results for the structure of the peptidyl transferase center is considered. The PHONT approach is generally applicable to studies of complex RNA-containing molecules.  相似文献   

10.
11.
J W Weller  W E Hill 《Biochemistry》1992,31(10):2748-2757
Ribosomal RNA molecules within each ribosomal subunit are folded in a specific three-dimensional form. The accessibility of specific sequences of rRNA of the small ribosomal subunit of Escherichia coli was analyzed using complementary oligodeoxyribonucleotides, 6-15 nucleotides long. The degree of hybridization of these oligomers to their RNA complements within the 30S subunit was assessed using nitrocellulose membrane filter binding assays. Specifically, the binding of short DNA oligomers (hexameric and longer) complementary to nucleotides 919-928, 1384-1417, 1490-1505, and 1530-1542 of 16S rRNA was monitored, and in particular how such binding was affected by the change in the activation state of the subunit. We found that nucleotides 1397-1404 comprise an unusually accessible sequence in both active and inactive subunits. Nucleotides 919-924 are partially available for hybridization in active subunits and somewhat more so in inactive subunits. Nucleotides 1534-1542 are freely accessible in active, but only partially accessible in inactive subunits, while nucleotides 1490-1505 and 1530-1533 are inaccessible in both, under the conditions tested. These results are in general agreement with results obtained using other methods and suggest a significant conformational change upon subunit activation.  相似文献   

12.
DExD/H proteins catalyze structural rearrangements in RNA by coupling ATP hydrolysis to the destabilization of RNA helices or RNP complexes. The Escherichia coli DExD/H protein DbpA specifically recognizes a region within the catalytic core of 23S rRNA. To better characterize the interaction of DbpA with this region and to identify changes in the complex between different nucleotide-bound states of the enzyme, RNase T1, RNase T2, kethoxal and DMS footprinting of DbpA on a 172 nt fragment of 23S rRNA were performed. A number of protections identified in helices 90 and 92 were consistent with biochemical experiments measuring the RNA binding and ATPase activity of DbpA with truncated RNAs. When DbpA was bound with AMPPNP, but not ADP, several additional footprints were detected in helix 93 and the single-stranded region 5′ of helix 90, suggesting binding of the helicase domains of DbpA at these sites. These results propose that DbpA can act at multiple sites and hint at the targets of its biological activity on rRNA.  相似文献   

13.
The synthesis of a 5′-O-BzH–2′-O-ACE-protected pseudouridine phosphoramidite is reported [BzH, benzhydryloxy-bis(trimethylsilyloxy)silyl; ACE, bis(2-acetoxyethoxy)methyl]. The availability of the phosphoramidite allows for reliable and efficient syntheses of hairpin RNAs containing single or multiple pseudouridine modifications in the stem or loop regions. Five 19-nt hairpin RNAs representing the 1920-loop region (G1906–C1924) of Escherichia coli 23S rRNA were synthesized with pseudouridine residues located at positions 1911, 1915 and 1917. Thermodynamic parameters, circular dichroism spectra and NMR data are presented for all five RNAs. Overall, three different structural contexts for the pseudouridine residues were examined and compared with the unmodified RNA. Our main findings are that pseudouridine modifications exhibit a range of effects on RNA stability and structure, depending on their locations. More specifically, pseudouridines in the single-stranded loop regions of the model RNAs are slightly destabilizing, whereas a pseudouridine at the stem–loop junction is stabilizing. Furthermore, the observed effects on stability are approximately additive when multiple pseudouridine residues are present. The possible relationship of these results to RNA function is discussed.  相似文献   

14.
15.
The Escherichia coli DEAD protein DbpA is an RNA-specific ATPase that is activated by a 153-nt fragment within domain V of 23S rRNA. A series of RNA subfragments and sequence changes were used to identify the recognition elements of this RNA-protein interaction. Reducing the size of the fully active 153-nt RNA yields compromised substrates in which both RNA and ATP binding are weakened considerably without affecting the maximal rate of ATP hydrolysis. All RNAs that stimulate ATPase activity contain hairpin 92 of 23S rRNA, which is known to interact with the 3' end of tRNAs in the ribosomal A-site. RNAs with base mutations within this hairpin fail to activate ATP hydrolysis, suggesting that it is a critical recognition element for DbpA. Although the isolated hairpin fails to activate DbpA, RNAs with an extension of approximately 15 nt on either the 5' or 3' side of hairpin 92 elicit full ATPase activity. These results suggest that the binding of DbpA to RNA requires sequence-specific interactions with hairpin 92 as well as nonspecific interactions with the RNA extension. A model relating the RNA binding and ATPase activities of DbpA is presented.  相似文献   

16.
During initiation of protein synthesis in bacteria, translation initiation factor IF2 is responsible for the recognition of the initiator tRNA (fMet-tRNA). To perform this function, IF2 binds to the ribosome interacting with both 30S and 50S ribosomal subunits. Here we report the topographical localization of translation initiation factor IF2 on the 70S ribosome determined by base-specific chemical probing. Our results indicate that IF2 specifically protects from chemical modification two sites in domain V of 23S rRNA, namely A2476 and A2478, and residues around position 2660 in domain VI, the so-called sarcin-ricin loop. These footprints are generated by IF2 regardless of the presence of fMet-tRNA, GTP, mRNA, and IF1. IF2 causes no specific protection of 16S rRNA. We observe a decreased reactivity of residues A1418 and A1483, which is an indication that the initiation factor has a tightening effect on the association of ribosomal subunits. This result, confirmed by sucrose density gradient analysis, seems to be a universally conserved property of IF2.  相似文献   

17.
4.5S RNA is the bacterial homolog of the mammalian signal recognition particle (SRP) RNA that targets ribosome-bound nascent peptides to the endoplasmic reticulum. To explore the interaction of bacterial SRP with the ribosome, we have isolated rRNA suppressor mutations in Escherichia coli that decrease the requirement for 4.5S RNA. Mutations at C732 in 16S rRNA and at A1668 and G1423 in 23S rRNA altered the cellular responses to decreases in both Ffh (the bacterial homolog of SRP54) and 4.5S RNA levels, while the C1066U mutation in 16S rRNA and G424A mutation in 23S rRNA affected the requirement for 4.5S RNA only. These data are consistent with a dual role for 4.5S RNA, one involving co-translational protein secretion by a 4.5S-Ffh complex, the other involving free 4.5S RNA.  相似文献   

18.
J Ko  Y Lee  I Park  B Cho 《FEBS letters》2001,508(3):300-304
To identify RNA motifs interacting with 5S rRNA, a systematic evolution of ligands by exponential enrichment experiment was applied. Some of the resulting RNA aptamers contained a consensus sequence similar to the sequence in the loop region of helix 89 of 23S rRNA. We show that the synthetic helix 89 RNA motif indeed interacted with 5S rRNA and that the region around loop B of 5S rRNA was involved in this interaction. These results suggest the presence of a novel RNA-RNA interaction between 23S rRNA and 5S rRNA which may play an important role in the ribosome function.  相似文献   

19.
One of the main causes of failure of fluorescence in situ hybridization with rRNA-targeted oligonucleotides, besides low cellular ribosome content and impermeability of cell walls, is the inaccessibility of probe target sites due to higher-order structure of the ribosome. Analogous to a study on the 16S rRNA (B. M. Fuchs, G. Wallner, W. Beisker, I. Schwippl, W. Ludwig, and R. Amann, Appl. Environ. Microbiol. 64:4973-4982, 1998), the accessibility of the 23S rRNA of Escherichia coli DSM 30083(T) was studied in detail with a set of 184 CY3-labeled oligonucleotide probes. The probe-conferred fluorescence was quantified flow cytometrically. The brightest signal resulted from probe 23S-2018, complementary to positions 2018 to 2035. The distribution of probe-conferred cell fluorescence in six arbitrarily set brightness classes (classes I to VI, 100 to 81%, 80 to 61%, 60 to 41%, 40 to 21%, 20 to 6%, and 5 to 0% of the brightness of 23S-2018, respectively) was as follows: class I, 3%; class II, 21%; class III, 35%; class IV, 18%; class V, 16%; and class VI, 7%. A fine-resolution analysis of selected areas confirmed steep changes in accessibility on the 23S RNA to oligonucleotide probes. This is similar to the situation for the 16S rRNA. Indeed, no significant differences were found between the hybridization of oligonucleotide probes to 16S and 23S rRNA. Interestingly, indications were obtained of an effect of the type of fluorescent dye coupled to a probe on in situ accessibility. The results were translated into an accessibility map for the 23S rRNA of E. coli, which may be extrapolated to other bacteria. Thereby, it may contribute to a better exploitation of the high potential of the 23S rRNA for identification of bacteria in the future.  相似文献   

20.
Two single-base substitutions were constructed in the 2660 loop of Escherichia coli 23S rRNA (G2661-->C or U) and were introduced into the rrnB operon cloned in plasmid pKK3535. Ribosomes were isolated from bacteria transformed with the mutated plasmids and assayed in vitro in a poly(U)-directed system for their response to the misreading effect of streptomycin, neomycin, and gentamicin, three aminoglycoside antibiotics known to impair the proofreading control of translational accuracy. Both mutations decreased the stimulation of misreading by these drugs, but neither interfered with their binding to the ribosome. The response of the mutant ribosomes to these drugs suggests that the 2660 loop, which belongs to the elongation factor Tu binding site, is involved in the proofreading step of the accuracy control. In vivo, both mutations reduced read-through of nonsense codons and frameshifting, which can also be related to the increased efficiency in proofreading control which they confer to ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号