首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red polyene pigment granadaene was purified and identified from Propionibacterium jensenii. Granadaene has previously been identified only in Streptococcus agalactiae, where the pigment correlates with the hemolytic activity of the bacterium. A connection between hemolytic activity and the production of the red pigment has also been observed in P. jensenii, as nonpigmented strains are nonhemolytic. The pigment and hemolytic activity from S. agalactiae can be extracted from the bacterium with a starch extraction solution, and this solution also extracts the pigment and hemolytic activity from P. jensenii. A partial purification of the hemolytic activity was achieved, but the requirement for starch to preserve its activity made the purification unsuccessful. Partially purified hemolytic fractions were pigmented, and the color intensity of the fractions coincided with the hemolytic titer. The pigment was produced in a soluble form when associated with starch, and the UV-visual spectrum of the extract gave absorption peaks of 463 nm, 492 nm, and 524 nm. The pigment could also be extracted from the cells by a low-salt buffer, but it was then aggregated. The purification of the pigment from P. jensenii was performed, and mass spectrometry and nuclear magnetic resonance analysis revealed that P. jensenii indeed produces granadaene as seen in S. agalactiae.  相似文献   

2.
Food selection by the marine cladoceran Penilia avirostris was studied in the field by HPLC analysis of phytoplankton marker pigments and in the laboratory by microscopic measurement of cell removal. Comparison between pigment composition in natural phytoplankton and in P. avirostris showed that P. avirostris preferred diatoms, cryptophytes and chlorophytes, and ignored prymnesiophytes and dinoflagellates. Peridinin, the marker pigment for dinoflagellates was found in P. avirostris only when the dinoflagellate populations were dominated by Prorocentrum. Pigment degradation rates ranged from 13.73% for alloxanthin to 36.62% for chlorophyll a. Clearance rates measured in the laboratory provided further evidence of strong preference for diatoms and cryptophytes, and avoidance of dinoflagellates. Microscopic counts suggested that P. avirostris was feeding on prymnesiophytes, although ingestion of prymnesiophytes could not be confirmed by pigment analysis.  相似文献   

3.
Phenazines are redox-active small molecules that play significant roles in the interactions between pseudomonads and diverse eukaryotes, including fungi. When Pseudomonas aeruginosa and Candida albicans were cocultured on solid medium, a red pigmentation developed that was dependent on P. aeruginosa phenazine biosynthetic genes. Through a genetic screen in combination with biochemical experiments, it was found that a P. aeruginosa-produced precursor to pyocyanin, proposed to be 5-methyl-phenazinium-1-carboxylate (5MPCA), was necessary for the formation of the red pigmentation. The 5MPCA-derived pigment was found to accumulate exclusively within fungal cells, where it retained the ability to be reversibly oxidized and reduced, and its detection correlated with decreased fungal viability. Pyocyanin was not required for pigment formation or fungal killing. Spectral analyses showed that the partially purified pigment from within the fungus differed from aeruginosins A and B, two red phenazine derivatives formed late in P. aeruginosa cultures. The red pigment isolated from C. albicans that had been cocultured with P. aeruginosa was heterogeneous and difficult to release from fungal cells, suggesting its modification within the fungus. These findings suggest that intracellular targeting of some phenazines may contribute to their toxicity and that this strategy could be useful in developing new antifungals.  相似文献   

4.
Fawley MW 《Plant physiology》1989,91(2):727-732
A new form of chlorophyll c has been isolated from the pyrmnesiophyte Pavlova gyrans Butcher. This pigment is spectrally similar to chlorophyll c2, but all the absorption maxima (454, 583, and 630 nm in diethyl ether) are shifted 4 to 6 nanometers to longer wavelengths. The new pigment can be separated from other chlorophyll c-type pigments by reversed-phase high performance liquid chromatography and thin layer chromatography. Both chlorophylls c1 and c2 are found with the new chlorophyll c pigment in P. gyrans, and it has also been detected in the chrysophyte Synura petersenii Korsh. The light-harvesting function of the new chlorophyll c pigment is indicated by its presence along with chlorophyll c1 and c2 in a light-harvesting pigment-protein complex isolated from P. gyrans in which chlorophyll c pigments efficiently transfer absorbed light energy to chlorophyll a.  相似文献   

5.

Background

The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS) genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS) genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes.

Methodology/Principal Findings

All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS) and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05). There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05).

Conclusions/Significance

The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid. Mitorubrinol and mitorubrinic acid are virulence factors of P. marneffei by improving its intracellular survival in macrophages.  相似文献   

6.
The phytopathogenic bacterium Pseudomonas syringae produces a fluorescent pigment when it is grown in iron-deficient media. This pigment forms a very stable Fe(III) complex that was purified in this form by using a novel procedure based on ultrafiltration and column chromatography. The Fe(III) complex has a molecular weight of 1,100 and contains 1 mol of Fe(III). The pigment is composed of an amino acid moiety with three threonines, three serines, one lysine, δ-N-hydroxyornithine, and a quinoline-type fluorescent chromophore. These features and its stability constant (in the range of 1032) suggest that the fluorescent pigment of P. syringae is related to the siderophores produced by another Pseudomonas species.  相似文献   

7.
Penicillium marneffei, one of the most important thermal dimorphic fungi, is a severe threat to the life of immunocompromised patients. However, the pathogenic mechanisms of P. marneffei remain largely unknown. In this work, we developed a model host by using nematode Caenorhabditis elegans to investigate the virulence of P. marneffei. Using two P. marneffei clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, the ingestion of live P. marneffei was lethal to C. elegans (P<0.001). Meanwhile, our results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in C. elegans than the strain 486, which can’t produce red pigment (P<0.001). Microscopy showed the formation of red pigment and hyphae within C. elegans after incubation with P. marneffei for 4 h, which are supposed to be two contributors in nematodes killing. In addition, we used C. elegans as an in vivo model to evaluate different antifungal agents against P. marneffei, and found that antifungal agents including amphotericin B, terbinafine, fluconazole, itraconazole and voriconazole successfully prolonged the survival of nematodesinfected by P. marneffei. Overall, this alternative model host can provide us an easy tool to study the virulence of P. marneffei and screen antifungal agents.  相似文献   

8.
The green pigment in the plasma of the scincid lizard genus Prasinohaema is identified as the bile pigment biliverdin. Concentrations of biliverdin in the plasma of P. flavipes, P. prehensicauda and P. virens are 714 ± 79 μmol/1 (mean ± one standard deviation), 1020 ± 624 μmol/1 and 819 ± 89 μmol/1, respectively. These values represent the highest concentration of plasma biliverdin measured for any organism and are the first report of non-pathological biliverdin accumulation in amniotes. We review the literature for fish species with high concentrations of plasma biliverdin and pathological biliverdin accumulation in humans; we find that Prasinohaema species have plasma biliverdin concentrations approximately 1.5–30 times greater than fish species with green blood plasma and 40 times greater than humans with green jaundice.  相似文献   

9.
Chloroquine resistant Plasmodium berghei has several unusual features including (i) lack of malaria “pigment”, (ii) more efficient host catabolism of heme from infected erythrocytes, and (iii) relatively inefficient uptake of external chloroquine by infected red cells. The malaria pigment produced by chloroquine sensitive P. berghei is probably incompletely catabolized hemoglobin, the heme group of which is unavailable for subsequent catabolism by the host's reticuloendothelial system. This pigment has been suggested by others as the site of high affinity chloroquine binding. We hypothesized that all three characteristics of chloroquine resistant infections might be explained by enhanced proteolytic digestion of host cell hemoglobin. In confirmation, we report that chloroquine resistant P. berghei has 700–800% greater protease activity than the chloroquine sensitive form. This greatly elevated protease activity may explain the aforementioned characteristics of chloroquine resistant P. berghei and may help elucidate the basis of chloroquine resistance in human P. falciparum.  相似文献   

10.
《BBA》1986,848(1):83-91
We have performed a quantitative analysis of the pigment composition of different pigment-protein complexes present in the membrane of the green sulfur bacterium Prosthecochloris aestuarii, using the resolving power of reversed-phase high-performance liquid chromatography. The most purified photochemically active complexes contained only carotenoids (OH-chlorobactene and rhodopin), bacteriochlorophyll a and a chlorophyllous pigment with absorption maxima at 663 and 433 nm, like bacteriochlorophyll c. However, the lipophilicity of this pigment, labeled BChl 663, is quite high and indicates that it contains 5–6 additional methylene groups compared to the BChl c homologue known as most lipophilic. Comparison of the BChl 663 content of various pigment-protein complexes indicates that BChl 663 is present in an amount of 10–15 molecules per reaction center. BChl 663 absorbs at 670 nm in vivo, with a specific extinction coefficient of 85 (±10) mM−1 · cm−1. In view of the evidence that the primary electron acceptor in P. aestuarii is a pigment with absorption maximum at 670 nm (Nuijs, A.M., Vasmel, H., Joppe, H.L.P., Duysens, L.N.M. and Amesz, J. (1985) Biochim. Biophys. Acta 807, 24–34) a direct consequence of these experiments is the fact that only BChl 663 can be a likely candidate for the role of primary electron acceptor as no other pigments absorbing around 670 nm (e.g., bacteriopheophytin c) are present in a photochemically active pigment-protein complex derived from the membrane of this green bacterium.  相似文献   

11.
A rapid electrical potential, which we have named the M-potential, can be obtained from the Drosophila eye using a high energy flash stimulus. The potential can be elicited from the normal fly, but it is especially prominent in the mutant norp AP12 (a phototransduction mutant), particularly if the eye color pigments are genetically removed from the eye. Several lines of evidence suggest that the M-potential arises from photoexcitation of long-lived metarhodopsin. Photoexcitation of rhodopsin does not produce a comparable potential. The spectral sensitivity of the M-potential peaks at about 575 nm. The M-potential pigment (metarhodopsin) can be shown to photoconvert back and forth with a "silent pigment(s)" absorbing maximally at about 485 nm. The silent pigment presumably is rhodopsin. These results support the recent spectrophotometric findings that dipteran metarhodopsin absorbs at much longer wavelengths than rhodopsin. The M-potential probably is related to the photoproduct component of the early receptor potential (ERP). Two major differences between the M-potential and the classical ERP are: (a) Drosophila rhodopsin does not produce a rapid photoresponse, and (b) an anesthetized or freshly sacrificed animal does not yield the M-potential. As in the case of the ERP, the M-potential appears to be a response associated with a particular state of the fly visual pigment. Therefore, it should be useful in in vivo investigations of the fly visual pigment, about which little is known.  相似文献   

12.
Dithionite reduced difference spectra of extracts of denitrifying pseudomonads revealed small absorption maxima at 567 and 539 nm, suggestive of α and β bands of a new b type cytochrome. The new pigment was present in cells grown both aerobically and anaerobically and was located in the particulate fraction of extracts. These extracts also contained, in much higher concentrations, additional pigments resembling cytochromes c553 and b559, which were readily reduced by NADH or endogenous substrates, although a small proportion of the b559 required dithionite for complete reduction. In contrast, most of the new 567 pigment was not readily reduced by NADH, succinate, or endogenous substrates, and it was most easily visualized with dithionite in the sample cuvette, and either endogenous substrates or NADH in the reference cuvette. Dyes of low redox potential such as benzyl viologen (Em,7 = ?359 mV), phenosafranine (Em,7 = ?250 mV) and reduced janus green (Em,7 = ?225 mV) could substitute for dithionite as reductant for the new 567 pigment. Cresyl violet (Em,7 = ?160 mV) caused partial reduction. However, redox compounds of higher potential such as reduced indigo carmine, (Em,7 = ?125 mV) reduced methylene blue (Em,7 = ?11 mV), ferrooxalate and ascorbate could not replace dithionite as reductant. Most of the cytochrome b559 and the c553 were reduced by ascorbate. Thus the new 567 pigment appears to have a mid-point potential between ?225 and ?125 mV, well below most of the cytochrome b559. The new 567-nm pigment was rapidly oxidized by brief but vigorous aeration and was also slowly and partially re-reduced when concentrated extracts were allowed to stand without aeration. A more complete reduction of the 567 pigment was readily obtained by the addition of a mixture of NADH and FAD. The 567 pigment was observed in several denitrifying pseudomonads, P. fluorescens, P. stutzeri and also in Micrococcus denitrificans, but was not detectable in the non-denitrifiers Escherichia coli or Aerobacter aerogenes.  相似文献   

13.
The karyorelictid ciliate Loxodes striatus has pigment granules which are similar in size, structure and distribution to the pigmentocysts in the heterotrich ciliates, Blepharisma japonicum and Stentor coeruleus, which are known to be extrusomes for chemical defence against predators. We examined whether the pigment granules of L. striatus are also defensive organelles. We showed that: (1) pigment granules of L. striatus are extrusive organelles; (2) bleached cells of L. striatus produced by inducing a massive discharge of pigment granules are more vulnerable than normally pigmented cells to the raptorial ciliate Dileptus margaritifer and the turbellarian Stenostomum sphagnetorum, while they are indistinguishable from intact cells in external morphology and the capacity to grow; (3) the cell-free fluid (CFF) which contains the pigment discharged from pigment granules of L. striatus induced in D. margaritifer behavioural and pathological reactions which are essentially the same as those observed in the interaction with L. striatus, and this effect of the CFF disappeared when the pigment was bleached by light. We conclude that pigment granules of L. striatus are extrusomes for chemical defence against predators, and that the defence is based on the toxic pigment contained in these organelles.  相似文献   

14.
Cells of Anacystis nidulans consume oxygen when illuminated with 750 nm light. The same process occurs with 675 nm light when the photosynthetic production of oxygen has been halted by gentle heating of the cells. These reactions do not require the addition of artificial redox compounds. There seem to be two separate systems, one activated by 750 nm light, the other by 675 nm light. Polarographic action action spectra reveal that the 675 nm system utilises pigments of the photosynthetic apparatus, excluding phycocyanin. Fluorescence excitation spectra suggest that only the pigment P750 is involved in the 750 nm system. Purified P750 recombines spontaneously with extracted pigment-free cell fragments. After recombination the P750 has the same spectroscopic properties as the pigment in vivo.  相似文献   

15.
A PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was used for assessing genetic relatedness among isolates of the genus Phoma. Randomly Amplified Polymorphic DNA (RAPD) revealed the presence of interspecific genetic variation among the pigment producing isolates of Phoma and has shown distinct phylogenetic cluster. The major objective of the study was to study the genetic variation, if any. Study was aimed to differentiate four pigment producing species of Phoma based on morphological studies and molecular markers in general and RAPD in particular. We found that the test species of Phoma can be very well differentiated using molecular markers. Phoma sorghina was differentiated from P. exigua, P. fimeti and P. herbarum. RAPD profiles of P. herbarum and P. fimeti has shown the maximum similarity, which indicates the genetic relatedness among these two species which were considered earlier as distinct species based on morphological observation.  相似文献   

16.
1. P. reticulatus skins in vitro exhibit punctate melanophores, and darken in response to the melanotropins in a dose-related manner.2. The relative potencies (Ac-Nle4-alpha-MSH4–13-NH2< alpha-MSH = Ac-Cys4,Cys10-alpha-MSH4–13-NH2) suggest that the supression of the amino-terminal tripeptide may affect the ideal peptide conformation for interaction with the receptor, which is restored with cyclization of the decapeptide fragment.3. Our data suggest that hormonal control of P. reticulatus pigment cells is mainly exerted by alpha-MSH, as none of the other agonists (isoproterenol, norepinephrine, MCH and melatonin) exhibited pigment dispersing or aggregating activities.4. L. paradoxa scales possess non-innervated epidermal and dermal melanophores, which exhibit stellate shape in vitro.5. Norepinephrine is a weak partial agonist in L. paradoxa epidermal melanophores, in the presence or in the absence of the beta-adrenoceptor blocker propranolol, suggesting that catecholamines do not play a role in the control of pigment cells.6. Both epidermal and dermal melanophore responses to MCH and to its analogue MCH5–15, and to melatonin were also slow, partial and obtained with high doses of the hormones.7. The relative insensitivity of L. paradoxa melanophores is in accordance with the animal cryptic behavior, since it lives in muddy dark waters, and does not seem to depend on chromatic adaptation for camouflage.  相似文献   

17.
When the retinal pigment epithelial cells of chick embryo are cultured in monolayer conditions, the pigment granules are lost from the cytoplasm. The first structural change in depigmentation is the transformation of pigment granules into the degradative organelles designated as the dense body and melanosome complex. The cells are grown in medium containing DBcAMP of various doses from 10?5 to 10?2M. Cell proliferation is retarded by treatment with DBcAMP (10?3M). The transformation of pigment granules is almost completely prevented in all 1-day cultured cells. In 5-day cultured cells continuously treated with more than 10?4M, the transformation is not only prevented, but the synthesis of pigment granules is stimulated. A similar result is obtained by the administration of 10?3M theophylline. 5′-AMP does not prevent the transformation of pigment granules but seems to stimulate the synthesis of pigment granules. On the other hand, cGMP is ineffective both on prevention of transformation and on synthesis of pigment granules. The mechanisms of the transformation of pigment granules are discussed.  相似文献   

18.
《BBA》1987,892(1):23-29
The prasinophycean alga Mantoniella squamata contains besides chlorophyll a and b a third chlorophyll c-like pigment in its light-harvesting antenna. This third chlorophyll was purified by reverse phase and polyethylene chromatography in order to identify its chemical structure. The absorption and fluorescence spectra were measured not only from the doubly purified pigment, but also from its Mg-free derivates. The spectra were compared with those of authentic chlorophyll c and of Mg-2,4-desethyl-2,4-divinylpheoporphyrin a5 monomethyl ester which was isolated from Rhodobacter capsulata. The results show that the pigment from Mantoniella agrees best with chlorophyll c1. In order to clarify the spectral data, chlorophyll c1 and c2, the pigment from Mantoniella and Mg-2,4-desethyl-2,4-divinylpheoporphyrin a5 monomethyl ester were resolved by polyethylene chromatography. The chromatographic analysis clearly shows that the pigment from Mantoniella comigrates with chlorophyll c1 and not with the bacterial pigment or chlorophyll c2. Mantoniella is the first organism which has been demonstrated to contain chlorophyll a, b and c.  相似文献   

19.
The production of the blue pigment indigoidine has been achieved in the entomopathogenic bacterium Photorhabdus luminescens by a promoter exchange and in Escherichia coli following heterologous expression of the biosynthesis gene indC. Moreover, genes involved in the regulation of this previously “silent” biosynthesis gene cluster have been identified in P. luminescens.  相似文献   

20.
The FGF2 signaling pathway components in tissues of the posterior wall in the normal and regenerating eye of the adult Pleurodeles waltl newt were detected for the first time. The fgf2 gene expression was found in the retina, retinal pigment epithelium, and choroid using polymerase chain reaction (PCR). A high homology of the mRNA nucleotide sequence of the most conservative fgf2 gene region in the P. waltl with the fgf2 orthologs in other vertebrates was proved. The Fgf2 protein amino acid sequence of the P. waltl newt demonstrates even more homology with this growth factor in other vertebrates. The Fgf2 protein with a molecular weight 35 kDa was found in the studied eye tissues using Western blot hybridization. Localization of the Fgf2 protein and its Fgfr receptors was immunohistochemically studied in the pigment epithelium, choroid, central and growth retina regions of the newt native eye, and in the connective cilium of photoreceptors. Using real-time PCR and immunohistochemistry methods, it was found that the fgf2 gene down-regulation and a decrease in the intensity of the immunochemical reaction of its protein product (Fgf2) occur in the early period after the retina removal (in 4–8 days) (as compared with those in the same department of the unoperated eye).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号