首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyhedral protein preparations from five nuclear polyhedrosis viruses isolated from four closely related host insects of the noctuid subfamily Plusiinae were characterized by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE), high voltage paper electrophoresis, and amino acid analysis. The viruses were Autographa california multiple-embedded virion type (MEV), Pseudoplusia includens singly embedded virion type (SEV), Rachiplusia ou MEV, Trichoplusia ni MEV, and T. ni SEV. Each was produced in its own host; A. californica MEV was also produced in T. ni larvae to determine possible host influence on polyhedral protein chemistry. Each test revealed minor, reproducible differences among most isolates. In SDS-PAGE, the major protein component ranged from 26,700 to 28,300 MW among the isolates. Differences were confined to minor protein bands or to band intensity. Peptide maps showed differences among most isolates in numbers of acidic and basic peptide spots, but all had an identical number of neutral spots. Migration patterns also differed among most isolates. The amino acid compositions of the six polyhedral inclusions were very similar, with aspartic and glutamic acids being the predominant residues. The greatest differences were found between the MEV and SEV groups, with lesser differences within each group. In all analyses, A. californica MEV produced in A. californica was indistinguishable from virus produced in T. ni.  相似文献   

2.
Purified polyhedron proteins and purified, ultrasonicated virions of four nuclear polyhedrosis viruses (NPVs), separable into two morphologic groups of singly and multiply embedded virion types (SEVs and MEVs), were investigated by immunodiffusion and immunoelectrophoresis. The four viruses were Pseudoplusia includens SEV, Trichoplusia ni SEV, T. ni MEV, and Autographa californica MEV. In immunodiffusion, SEV polyhedron proteins formed two precipitin bands with antiserum to SEV polyhedron proteins, while MEV polyhedron proteins formed only one. All four proteins formed one precipitin band with antiserum to MEV polyhedron protein, with a spur between SEV and MEV proteins. In immunoelectrophoresis, mobilities of SEV proteins were significantly different from those of MEVs. Precipitin arc patterns were similar to those in immunodiffusion when electrophoresis was carried out at 4 C; at room temperature, a single arc of precipitation formed with all four proteins. SEV virions formed five possibly identical precipitin bands in immunodiffusion with antiserum to SEV virions. MEV virions formed three possibly identical precipitin bands when reacted with antiserum to MEV virions. Little or no cross-reactions were observed between SEV and MEV virions or between virions and polyhedron proteins. In immunoelectrophoresis, SEV virions formed three precipitin arcs in reactions with SEV antisera and none with MEV antisera; MEV virions formed two arcs with MEV antisera and none with SEV antisera. When antisera were subjected to electrophoresis, five arcs were formed by SEVs and three by MEVs in homologous systems, and none were formed in heterologous systems.  相似文献   

3.
Deoxyribonucleic acid (DNA) from isolates of five nuclear polyhedrosis viruses (NPV) from lepidopterous hosts of the noctuid subfamily Plusiinae was analyzed by ion-exchange and paper chromatography. Viruses and production hosts were: Trichoplusia ni singly embedded virion type (SEV) from T. ni, Pseudoplusia includens SEV from P. includens, T. ni multiply embedded virion type (MEV) from T. ni, Autographa californica MEV from A. californica, A. californica MEV from T. ni, and Rachiplusia ou MEV from R. ou. Neither uracil nor 5-methyl cytosine was detected in the DNAs. Adenine:thymine (A:T) and guanine:cytosine (G:C) ratios were nearly constant for all the NPVs. AT:GC ratios for the SEVs were 1.60 and 1.57 and were clearly separable from those of the MEVs which ranged from 1.32 to 1.38. No differences in DNA composition within SEV or MEV groups were apparent.  相似文献   

4.
Twelve singly embedded isolates (SEV) and two multiply embedded isolates (MEV) of nuclear polyhedrosis viruses from Heliothis larvae were compared by time-mortality assays in neonate H. zea larvae. The isolates could be separated into six groups based on differences in the 50% survival time (ST50) values. Isolates with identical restriction endonuclease (REN) profiles did not differ significantly in their ST50 values, whereas isolates with several different REN cleavage sites also had significantly different ST50 values. With the exception of one isolate from India, the singly embedded isolates acted faster than the multiply embedded isolates.  相似文献   

5.
The structural polypeptides of 12 baculovirus isolates which included nuclear polyhedrosis viruses (NPVs) and granulosis viruses (GVs) obtained from four different species of the insect genus Heliothis collected in different geographical regions of the world were characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The matrix proteins were compared according to their molecular weights and peptide profiles produced after limited proteolysis. Examination of the matrix and virion polypeptide profiles revealed three major polypeptide phenotypes which corresponded to the three baculovirus morphological groups; singly embedded nuclear polyhedrosis viruses (SNPVs), multiply embedded nuclear polyhedrosis viruses (MNPVs), and granulosis viruses (GVs). Enveloped nucleocapsid polypeptide profiles of isolates within each NPV phenotype differed in only one polypeptide whereas the two GV isolates differed by as many as five polypeptides. Nucleocapsid polypeptide profiles of isolates within each of the NPV subgroups were identical while those profiles from the GV nucleocapsids differed slightly in molecular weight of one polypeptide.  相似文献   

6.
We have studied the structural relationships between the outer capsid polypeptides of eight murine, bovine, and human isolates of type 1 and 3 mammalian reoviruses. Our results show that the outer capsid polypeptides of reoviruses isolated from different mammalian species, in different years and different geographical areas, have both conserved and unique methionine-containing tryptic peptides. We found that tryptic peptides from mu 1C polypeptides of two human, one murine, and two bovine type 3 isolates and one human and two bovine type 1 reoviruses are highly conserved. Our data show that only one tryptic peptide pattern of the mu 1C polypeptide (encoded by the M2 gene) was present in reoviruses isolated from the three different mammalian species. The mu 1C polypeptide of the type 3 Dearing strain contained one tryptic peptide not found in any other reovirus isolate examined. In marked contrast to the mu 1C polypeptides, the sigma 3 polypeptides (encoded by the S4 gene) of three type 1 and three type 3 isolates were divided into two patterns based on significant differences in their tryptic peptides. In addition, at least seven tryptic peptides were conserved among the sigma 3 polypeptides of all virus strains examined. The sigma 3 polypeptide of the type 3 Dearing strain was distinguishable from the sigma 3 polypeptides of all other strains examined. The one mu 1C and two sigma 3 tryptic peptide patterns were found to occur interchangeably in isolates of type 1 or type 3. About 1/3 of the tyrosine-containing tryptic peptides of sigma 1 polypeptides of four type 3 isolates examined were conserved. Comparison of peptide differences in sigma 1 polypeptides of these isolates showed that each had one or more unique tryptic peptides, suggesting that the S1 genes coding for these polypeptides had undergone genetic drift or, alternatively, that there are at least two tryptic peptide patterns present among the sigma 1 polypeptides of these isolates. Our results suggest that genetic drift and reassortment are the most likely explanation for the extensive genetic diversity found in natural populations of mammalian reoviruses.  相似文献   

7.
The serological relationships of five nuclear polyhedrosis viruses (NPV) were investigated using the immunodiffusion technique with intragel absorption. Reciprocal tests demonstrated that virion fractions from Autographa californica multiple embedded virus (MEV), Heliothis armigera MEV, and H. zea single embedded virus (SEV) are not related to each other or to virions from Trichoplusia ni SEV and Pseudoplusia includens SEV. Virion fractions of T. ni and P. includens NPV were shown to be closely related, sharing several antigens. Matrix fractions possessed a common group antigen and one or two antigens specific for the individual NPV with the exception that T. ni and P. includens NPV shared one of these antigens. The specific antigens of the matrix fraction were also shared with the homologous virion fraction.  相似文献   

8.
Mouse fibroblasts (3T3-L1 cells) accumulate pulse-labeled long-lived polypeptides in detergent- and salt-insoluble aggregates when chased in the presence of inhibitors of lysosomal cysteine cathepsins, including E-64. Proteins found in the detergent- and salt-insoluble fraction include polypeptides which are disulfide cross-linked. E-64-induced polypeptide aggregates cofractionate with lysosomal enzyme markers on density gradients and are found in multivesicular dense bodies which by electron microscopy appear to be engaged in microautophagy. The results are discussed in relation to the possible role of polypeptide aggregation in the sequestration or trapping of cytoplasmic proteins by the lysosomal system.  相似文献   

9.
Theiler's murine encephalomyelitis viruses (TMEV) are separable into two groups based on their biological behavior: those highly virulent isolates which are unable to cause persistent infection and the less virulent isolates which regularly produce persistent central nervous system infection in mice. Two highly virulent and five less virulent TMEV were found to have the same buoyant density (1.34 g/ml) on isopycnic centrifugation and virion structure by electron microscopy. Negatively stained virus particles purified in Cs(2)SO(4) gradients appeared to have icosahedral symmetry and measured 28 nm in diameter. Mature virions were found to possess three major structural polypeptides, VP1, VP2 and VP3, in the range of 25,000 to 35,000 daltons, and a smaller fourth major polypeptide, VP4, of 6,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The precursor of VP2 and VP4, VP0, which is a minor polypeptide of mature picornavirus particles, was also identified. However, a slight but consistent difference in several of the capsid polypeptides between the highly virulent and less virulent TMEV was found. VP1 was slightly larger (34,000 versus 33,500 daltons) and VP2 was slightly smaller (31,000 versus 32,000 daltons) for the highly virulent strains compared to the same polypeptide species in the less virulent viruses. VP0 was also slightly smaller (35,500 versus 36,000 daltons) for the highly virulent isolates compared to their less virulent counterparts. Finally, trypsin which was used initially in our purification procedure resulted in preferential cleavage of a 2,000-molecular-weight fragment or fragments from VP1 of only the less virulent isolates.  相似文献   

10.
The protein composition of the fibrous sheath (FS) and the outer dense fibers (ODF), two cytoskeletal components of the tail of spermatozoa, was compared by using polyacrylamide gel electrophoresis and immunochemistry applied to Western blots and to spermatozoa. Isolated FS and ODF, the purity of which were verified by electron microscopy (EM), were denatured and either run on sodium dodecyl sulfate-polyacrylamide gels or used to raise antibodies. The gels revealed at least 18 and 14 polypeptide bands for the FS and ODF, respectively. The major bands of the FS had molecular masses of 75, 27.5, and 14.4 kDa, whereas the major bands of the ODF-connecting piece had molecular masses of 32-26, 20, 14.4, 84, and 80 kDa. Several prominent FS and ODF bands were found to comigrate on gels, and the 14.4 kDa polypeptides had similar electrophoretic properties. Anti-FS serum reacted with the majority of Western blot-transferred FS polypeptides, but also cross-reacted strongly with a major 14.4 kDa ODF polypeptide and with less affinity to other major ODF polypeptides. Anti-ODF serum reacted with the majority of ODF polypeptides, but also cross-reacted strongly with a major 14.4 kDa FS polypeptide, and with less affinity to several other FS polypeptides including the 75 kDa band. Antibodies affinity-purified from the 14.4 kDa FS polypeptide only cross-reacted with the 14.4 kDa ODF polypeptide, whereas antibodies purified from the 14.4 kDa ODF polypeptide cross-reacted with 14.4, 27.5, 57, and 63 kDa FS polypeptides. The immunocross-reactions observed on Western blots were confirmed by immunocytochemical methods applied to spermatozoa. This study demonstrates that the FS and ODF, both composed of many polypeptides, several having similar molecular weights, are related cytoskeletal structures as they have epitopes in common, and both contain 14.4 kDa polypeptides with common antigenic and electrophoretic properties.  相似文献   

11.
Abstract Cell envelope preparations of Treponema hyodysenteriae (strain CN 8368) were examined using biochemical and immunochemical methods. Several major polypeptides were detected with molecular weight between 24-kDa and 45-kDa. The majority of these polypeptides were recognised by serum from a pig vaccinated with an experimental whole-cell T. hyodysenteriae vaccine and hyperimmune anti- T. hyodysenteriae rabbit sera. Immune electron microscopy confirmed that the major antigens detected were associated with the cell envelope. Triton X-100, in the presence of EDTA, completely solubilised a polypeptide with an approximate molecular weight of 36-kDa. Antibodies to this polypeptide were not absorbed by whole T. innocens cells.  相似文献   

12.
Heads of spermatozoa were sonically separated from tails and treated in 1 N NaOH until the perforatoria were partially detached from the nucleus. Their complete detachment was then assured by repeatedly passing the suspension through a 22-gauge needle. The perforatoria were then separated from nuclei on sucrose gradients and the purity of the fraction was verified by electron microscopy. The isolated perforatoria were denatured and used to raise antibodies or run on polycrylamide gels. Such gels revealed many polypeptide bands, six of which were most prominent (Mr approximately 13,000, 13,400, 16,000, 33,000, 35,000, and 43,000). Of these, the 16,000 Mr polypeptide was major. Anti-perforatorium serum reacted with the perforatoria of fixed spermatozoa, with a substance found between the plasmalemma and the outer acrosomal membrane of the acrosomal head cap and with the inner component of the ventral spur, but not with the postacrosomal dense lamina. This observation indicated that the perforatorium and dense lamina, although structurally continuous to form the perinuclear theca, are biochemically distinct. On Western blots, the anti-perforatorium serum reacted with the prominent polypeptides of the perforatorium and cross-reacted with some less prominent polypeptides of the fibrous sheath (FS) and outer dense fibers (ODF), most notably with a 16,000 Mr polypeptide found in both. Likewise anti-FS or anti-ODF serum cross-reacted with some major and minor polypeptides of the perforatorium, again most notably with a major 16,000 Mr polypeptide. The immunocross-reactions observed on Western blots were confirmed by immunocytochemical methods applied to spermatozoa. These results demonstrate that the perforatorium is composed of several polypeptides, is immunologically distinct from the postacrosomal dense lamina, may be immunologically similar to a substance found between the plasmalemma and outer acrosomal membrane and to a substance found on the inner aspect of the ventral spur, has antigenic determinants in common with the FS and ODF, and may share a 16,000 Mr polypeptide with these two cytoskeletal structures of the flagellum.  相似文献   

13.
《The Journal of cell biology》1988,107(6):2679-2688
Cilia were isolated from Tetrahymena thermophila, extracted with Triton X-114, and the detergent-soluble membrane + matrix proteins separated into Triton X-114 aqueous and detergent phases. The aqueous phase polypeptides include a high molecular mass polypeptide previously identified as a membrane dynein, detergent-soluble alpha and beta tubulins, and numerous polypeptides distinct from those found in axonemes. Integral membrane proteins partition into the detergent phase and include two major polypeptides of 58 and 50 kD, a 49-kD polypeptide, and 5 polypeptides in relatively minor amounts. The major detergent phase polypeptides are PAS-positive and are phosphorylated in vivo. A membrane-associated ATPase, distinct from the dynein-like protein, partitions into the Triton X-114 detergent phase and contains nearly 20% of the total ciliary ATPase activity. The ATPase requires Mg++ or Ca++ and is not inhibited by ouabain or vanadate. This procedure provides a gentle and rapid technique to separate integral membrane proteins from those that may be peripherally associated with the matrix or membrane.  相似文献   

14.
The presence and distribution of intermediate filament proteins in mouse oocytes and preimplantation embryos was studied. In immunoblotting analysis of electrophoretically separated polypeptides, a distinct doublet of polypeptides with Mr of 54K and 57K, reactive with cytokeratin antibodies, was detected in oocytes and in cleavage-stage embryos. A similar doublet of polypeptides, reactive with cytokeratin antibodies, was also detected in late morula-and blastocyst-stage embryos, and in a mouse embryo epithelial cell line (MMC-E). A third polypeptide with Mr of 50K, present in oocytes only as a minor component, was additionally detected in the blastocyst-stage embryos. No cytokeratin polypeptides could be detected in granulosa cells. Immunoblotting with vimentin antibodies gave negative results in both cleavage-stage and blastocyst-stage embryos. In electron microscopy, scattered filaments, 10-11 nm in diameter, were seen in detergent-extracted cleavage-stage embryos. Abundant 10-nm filaments were present in the blastocyst outgrowth cells. In indirect immunofluorescence microscopy (IIF) of oocytes and cleavage-stage embryos, diffuse cytoplasmic staining was seen with antibodies to cytokeratin polypeptides but not with antibodies to vimentin, glial fibrillary acidic protein, or neurofilament protein. Similarly, the inner cell mass (ICM) cells in blastocyst outgrowths showed diffuse cytokeratin-specific fluorescence. We could not detect any significant fibrillar staining in cleavage-stage cells or ICM cells by the IIF method. The first outgrowing trophectoderm cells already had a strong fibrillar cytokeratin organization. These immunoblotting and -fluorescence results suggest that cytokeratin-like polypeptides are present in mouse oocytes and preimplantation-stage embryos, and the electron microscopy observations show that these early stages also contain detergent-resistant 10- to 11-nm filaments. The relative scarcity of these filaments, as compared to the high intensity in the immunoblotting and immunofluorescence stainings, speaks in favor of a nonfilamentous pool of cytokeratin in oocytes and cleavage-stage embryos.  相似文献   

15.
Essentially chlorophyll-free preparations of mitochondria from different tissues of the same plant can be obtained by a combined three step preparation procedure involving differential centrifugation, partition in aqueous polymeric two-phase system and centrifugation in a Percoll gradient. The polypeptide patterns of mitochondria from photosynthetic (leaves) and non-photosynthetic (petioles and roots) tissue from spinach were compared by use of SDS-electrophoresis.
About 35 polypeptides were found in leaf mitochondria with molecular weights from 14 to 103 kdalton. The polypeptide patterns of the membrane fractions and matrix fractions showed great differences. The membrane fractions contained significantly more polypeptide bands than the matrix fractions. The polypeptide patterns of mitochondria from photosynthetic and non-photosynthetic tissues showed some striking differences. The 15.9, 41.7, 50.7 and 101 kdalton polypeptides were clearly detected in leaf mitochondria but these polypeptides were not found or found in only small amounts in petiole and root mitochondria. The differences were mainly associated with the matrix fractions. Staining with 3,3',5,5'-tetramethylbenzidine and hydrogen peroxide for heme containing polypeptides showed that the polypeptides which differ do not contain heme.  相似文献   

16.
Incubation of amyloplasts isolated from cultured cells of sycamore (Acer pseudoplatanus L.) with [γ-32P]ATP resulted in the rapid phosphorylation (half-time of 40 seconds at 25 degrees Celcius) of organellar polypeptides. The preferred substrate for amyloplast protein kinases was Mg2+. ATP, and recovery of only [32P]serine after partial acid hydrolysis indicated the predominance of protein serine kinases in the organelle. These activities were located in the envelope and stromal fractions of the plastid, which showed different specificities toward exogenous protein substrates and distinct patterns of phosphorylation of endogenous polypeptides. A 66-kilodalton polypeptide, inaccessible to an exogenously added protease, was one of the major phosphorylated products found in intact amyloplasts at low [γ-32P] adenosine triphosphate concentrations. This polypeptide represented the major phosphoprotein observed with the isolated envelope fraction. The patterns of polypeptide phosphorylation found in intact amyloplasts and chloroplasts from cultured cell lines of sycamore were clearly distinguishable. The overall results indicate the presence of protein phosphorylation systems unique to this reserve plastid present in nonphotosynthetic tissues.  相似文献   

17.
The immediate-early (IE) infected cell proteins induced by the murine cytomegalovirus (Smith strain) were studied. These polypeptides were identified as IE proteins by their synthesis in the presence of actinomycin D after removal from a protein synthesis block mediated by cycloheximide. By using a murine antiserum against murine cytomegalovirus, three abundant polypeptides of 89, 84, and 76 kilodaltons (kd) were immunoprecipitated. The three major proteins are phosphorylated but not glycosylated and share antigenic determinants recognized by monoclonal antibodies. The 84 and 76-kd polypeptides represent post-translational modification products of the 89-kd protein. Accordingly, in vitro translation of IE infected cell RNA revealed only the 89-kd polypeptide. The viral origin of the RNA species directing the synthesis of the major 89-kd IE polypeptide was verified by hybrid selection of IE RNA with DNA fragments representing the region from 0.769 to 0.815 map units of the murine cytomegalovirus genome. IE polypeptides were found to be located in the nuclei and the cytoplasm of infected cells. Studies on the kinetics of IE polypeptide synthesis revealed negative regulatory effects on IE gene expression correlated with the synthesis of early proteins.  相似文献   

18.
Cricket paralysis virus purified from Galleria mellonella larvae was shown to be similar to virus purified from Drosophila melanogaster cells. Cricket paralysis virus contained three major structural polypeptides of similar molecular weight (around 30,000), had a buoyant density of 1.344 g/ml, and had a capsid diameter of 27 nm. Twenty virus-induced polypeptides could be detected in CrPV-infected Drosophila cells. Two major polypeptides found in the infected cells corresponded to two structural viral polypeptides (VP1 and VP3), whereas the third major intracellular polypeptide was the apparent precursor of the third viral structural polypeptide (VP2). Three of the primary virus-induced polypeptides had molecular weights of 144,000, 124,000, and 115,000. These and other polypeptides were chased into lower-molecular-weight proteins when excess cold methionine was added after a short [35S]methionine pulse. Although cricket paralysis virus has a number of characteristics in common with the mammalian enteroviruses, the extremely fast processing of high-molecular-weight polypeptides into viral proteins seems atypical. Also, no VP4 (8,000 to 10,000 molecular weight) has been found in the virus particles.  相似文献   

19.
The polypeptides of Leishmania mexicana mexicana (M379), L. m. amazonensis (LV78), L. major (LV39) and L. d. donovani (LV39) amastigotes and cultured promastigotes have been analysed by SDS-polyacrylamide gel electrophoresis. The polypeptide banding patterns of the promastigotes of the four species were quite similar, but distinct differences were detected between those of amastigotes. The results suggest that the various species of Leishmania are adapted differently for survival and growth in the mammalian host. The polypeptides of L. m. mexicana amastigotes were very rapidly hydrolysed unless protected by the cysteine proteinase inhibitor leupeptin.  相似文献   

20.
【目的】本研究旨在研究水貂肠炎病毒(mink enteritis virus,MEV)的基因组遗传进化特征。【方法】对采自山东境内水貂养殖场的109份水貂腹泻样品进行MEV的分离和鉴定,利用血凝和血凝抑制试验、多步生长曲线绘制以及蛋白的三级结构模拟等,对分离毒株生物学特性进行分析,通过重叠PCR对分离株进行全基因扩增,使用MegAlign进行序列同源性比对分析,利用DNAMANV6对基因组5’末端和3’末端回文结构进行预测,应用MEGAV6进行遗传进化分析。【结果】共分离得到5株病毒,经电镜观察和间接免疫荧光试验鉴定为MEV毒株,分别命名为MUTQS-1-5,GenBank登录号分别为OK275645、OK275646、OK275647、OK275648和OK275649;各分离株5’-和3’-UTR分别由长回文序列组成,具有典型的细小病毒基因组末端的茎环样结构,NS1和VP2基因的推导氨基酸序列存在多个非同义突变位点,其中NS1蛋白的E/Q545V位氨基酸突变,以及VP2蛋白的F267Y、Y324I位氨基酸突变为首次在MEV上发现;生物学特性分析表明,上述突变并未明显改变病毒的血凝及...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号