首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vernalization-2 (Vrn-2) is the major flowering repressor in temperate cereals. It is only expressed under long days in wild-type plants. We used two day-neutral (photoperiod insensitive) mutations that allow rapid flowering in short or long days to investigate the day length control of Vrn-2. The barley (Hordeum vulgare) early maturity8 (eam8) mutation affects the barley ELF3 gene. eam8 mutants disrupt the circadian clock resulting in elevated expression of Ppd-H1 and the floral activator HvFT1 under short or long days. When eam8 was crossed into a genetic background with a vernalization requirement Vrn-2 was expressed under all photoperiods and the early flowering phenotype was partially repressed in unvernalized (UV) plants, likely due to competition between the constitutively active photoperiod pathway and the repressing effect of Vrn-2. We also investigated the wheat (Triticum aestivum) Ppd-D1a mutation. This differs from eam8 in causing elevated levels of Ppd-1 and TaFT1 expression without affecting the circadian clock. We used genotypes that differed in “short-day vernalization”. Short days were effective in promoting flowering in individuals wild type at Ppd-D1, but not in individuals that carry the Ppd-D1a mutation. The latter showed Vrn-2 expression in short days. In summary, eam8 and Ppd-D1a mimic long days in terms of photoperiod response, causing Vrn-2 to become aberrantly expressed (in short days). As Ppd-D1a does not affect the circadian clock, this also shows that clock regulation of Vrn-2 operates indirectly through one or more downstream genes, one of which may be Ppd-1.  相似文献   

2.
The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in barley, we investigated the allelic variation of ten known or putative photoperiod and vernalization pathway genes between two genotypes, the spring barley elite cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare) and the wild barley accession ‘ISR42-8’ (Hordeum vulgare ssp. spontaneum). The genes studied are Ppd-H1, VRN-H1, VRN-H2, VRN-H3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3 and HvFT4. ‘Scarlett’ and ‘ISR42-8’ are the parents of the BC2DH advanced backcross population S42 and a set of wild barley introgression lines (S42ILs). The latter are derived from S42 after backcrossing and marker-assisted selection. The genotypes and phenotypes in S42 and S42ILs were utilized to determine the genetic map location of the candidate genes and to test if these genes may exert quantitative trait locus (QTL) effects on flowering time, yield and yield-related traits in the two populations studied. By sequencing the characteristic regions of the genes and genotyping with diagnostic markers, the contrasting allelic constitutions of four known flowering regulation genes were identified as ppd-H1, Vrn-H1, vrn-H2 and vrn-H3 in ‘Scarlett’ and as Ppd-H1, vrn-H1, Vrn-H2 and a novel allele of VRN-H3 in ‘ISR42-8’. All candidate genes could be placed on a barley simple sequence repeat (SSR) map. Seven candidate genes (Ppd-H1, VRN-H2, VRN-H3, HvGI, HvFT2, HvFT3 and HvFT4) were associated with flowering time QTLs in population S42. Four exotic alleles (Ppd-H1, Vrn-H2, vrn-H3 and HvCO1) possibly exhibited significant effects on flowering time in S42ILs. In both populations, the QTL showing the strongest effect corresponded to Ppd-H1. Here, the exotic allele was associated with a reduction of number of days until flowering by 8.0 and 12.7%, respectively. Our data suggest that Ppd-H1, Vrn-H2 and Vrn-H3 may also exert pleiotropic effects on yield and yield-related traits.  相似文献   

3.
NaCl stress causes the accumulation of several mRNAs in tomato seedlings. An upregulated cDNA clone, SAM1, was found to encode a S-adenosyl-L-methionine synthetase enzyme (AdoMet synthetase). Expression of the cDNA SAM1 in a yeast mutant lacking functional SAM genes resulted in high AdoMet synthetase activity and AdoMet accumulation. We show that tomato plants contain at least four SAM isogenes. Clones corresponding to isogenes SAM2 and SAM3 have also been isolated and sequenced. they encode predicted polypeptides 95% and 92% identical, respectively, to the SAM1-encoded AdoMet Synthetase. RNA hybridization analysis showed a differential response of SAM genes to salt and other stress treatments. SAM1 and SAM3 mRNAs accumulated in the root in response to NaCl, mannitol or ABA treatments. SAM1 mRNA accumulated also in leaf tissue. These increases of mRNA level were apparent as soon as 8 h after the initiation of the salt treatment and were maintained for at least 3 days. A possible role for AdoMet synthetases in the adaptation to salt stress is discussed.  相似文献   

4.
ACC氧化酶(ACC oxidase,ACO)是催化乙烯合成的关键酶之一,乙烯参与植物的盐胁迫反应过程,而盐胁迫严重影响花生产量。本研究通过对AhACOs基因的克隆及功能验证,探究AhACOs在花生盐胁迫响应中的生物学功能,为花生耐盐品种的选育提供基因资源。以花生耐盐突变体M29的cDNA为模板扩增得到基因AhACO1和AhACO2,与植物表达载体pCAMBIA super1300重组后,通过农杆菌介导的花粉管注射法将重组质粒转化到花育22号中。收获后切取籽仁远胚端部分子叶,利用PCR检测筛选阳性籽仁。利用qRT-PCR分析AhACOs基因表达量,通过毛细管柱气相色谱法检测植株的乙烯释放量。阳性籽仁和对照籽仁种植21 d后浇盐水,观察其表型变化。结果发现,盐胁迫后,转基因植株生长状况好于对照组花育22号,并且其叶绿素相对含量SPAD(soil and plant analyzer development)值和净光合速率(net photosynthesis rate,Pn)均高于对照组花生。另外,AhACO1和AhACO_(2)转基因植株的乙烯释放量分别为对照组花生的2.79倍和1.87倍。这些结果表明AhACO1和AhACO2可显著提高花生的耐盐能力。  相似文献   

5.
Heading date is one of the most important traits in wheat breeding as it affects adaptation and yield potential. A genome-wide association study (GWAS) using the 90 K iSelect SNP genotyping assay indicated that a total of 306 loci were significantly associated with heading and flowering dates in 13 environments in Chinese common wheat from the Yellow and Huai wheat region. Of these, 105 loci were significantly correlated with both heading and flowering dates and were found in clusters on chromosomes 2, 5, 6, and 7. Based on differences in distribution of the vernalization and photoperiod genes among chromosomes, arms, or block regions, 13 novel, environmentally stable genetic loci were associated with heading and flowering dates, including RAC875_c41145_189 on 1DS, RAC875_c50422_299 on 2BL, and RAC875_c48703_148 on 2DS, that accounted for more than 20% phenotypic variance explained (PVE) of the heading/flowering date in at least four environments. GWAS and t test of a combination of SNPs and vernalization and photoperiod alleles indicated that the Vrn-B1, Vrn-D1, and Ppd-D1 genes significantly affect heading and flowering dates in Chinese common wheat. Based on the association of heading and flowering dates with the vernalization and photoperiod alleles at seven loci and three significant SNPs, optimal linear regression equations were established, which show that of the seven loci, the Ppd-D1 gene plays the most important role in modulating heading and flowering dates in Chinese wheat, followed by Vrn-B1 and Vrn-D1. Additionally, three novel genetic loci (RAC875_c41145_189, Excalibur_c60164_137, and RAC875_c50422_299) also show important effect on heading and flowering dates. Therefore, Ppd-D1, Vrn-B1, Vrn-D1, and the novel genetic loci should be further investigated in terms of improving heading and flowering dates in Chinese wheat. Further quantitative analysis of an F10 recombinant inbred lines population identified a major QTL that controls heading and flowering dates within the Ppd-D1 locus with PVEs of 28.4% and 34.0%, respectively; this QTL was also significantly associated with spike length, peduncle length, fertile spikelets number, cold resistance, and tiller number.  相似文献   

6.
Plant growth promoting rhizobacteria such as Azospirillum brasilense are agronomically important as they are frequently used for crop inoculation. But adverse factors such as increasing soil salinity limit their survival, multiplication and phytostimulatory effect. In order to understand the role of the genes involved in the adaptation of A. brasilense Sp7 to salt stress, a mutant library (6,800 mutants) was constructed after random integration of a mini-Transposon Tn5 derivative containing a promoterless gusA and oriV. The library was screened for salt stress inducible Gus activity on minimal malate agar medium containing NaCl and 5-bromo-4-chloro-3-indolyl-β-d-glucuronide. Salt stress responsiveness of the promoters was estimated by quantifying GusA activity in the presence and absence of NaCl stress using p-nitrophenyl-β-d-glucuronide as a substrate. In 11 mutants showing high levels of gusA expression in the presence of salt-stress, the partial nucleotide sequence of the DNA region flanking the site of Tn5 insertion was determined and analysed using the NCBI-BLAST programs. Similarity searches revealed that 10 out of the 11 genes sequenced showed notable similarity with genes involved in functions related to modulation in the composition of exopolysaccharides, capsular polysaccharides, lipopolysaccharides, peptidoglycan and lipid bilayer of the cell envelope. Induction of cell envelope related genes in response to salt stress and salt sensitive phenotype of several mutants in A. brasilense indicate a prominent role of cell envelope in salt-stress adaptation.  相似文献   

7.
为了从全基因组和转录组水平鉴定响应盐胁迫的小麦DREB (dehydration responsive element binding,DREB) 基因,该研究对小麦耐盐材料CH7034苗期施加盐胁迫后的根部样本进行Illumina转录组测序,从中分离TaDREB家族成员的表达数据和可变剪接信息,并对其下游靶基因进行预测;利用 qRT PCR对盐胁迫响应TaDREB成员和预测靶基因进行验证。结果显示:(1)从小麦中共鉴定出48个DREB成员(204个拷贝序列),命名为TaDREB1~TaDREB48,分布于21条染色体。(2)TaDREB家族分为14组(G1~G14),位于G2、G5、G10和G14的TaDREB成员受NaCl胁迫后转录水平均无显著变化,其余组中共有25个(52%) TaDREB成员表现出对盐胁迫不同程度的响应;其中有9个成员在盐胁迫后持续上调(含5个新报道基因),有2个成员表现为持续下调;蛋白互作预测结果显示,下调成员TaDREB35的编码蛋白可能会受到1个小麦RING型E3泛素连接酶作用而降解。(3)盐胁迫后有9个成员TaDREB3、TaDREB6、TaDREB16、TaDREB19、TaDREB21、TaDREB24、TaDREB25.12、TaDREB43和TaDREB47发生了可变剪切变化。(4)从转录组差异表达基因中进一步鉴定出3个起始密码子上游2 000 bp序列,包含DRE/CRT元件且在A/B/D组间表达趋势一致的候选靶基因TaRD29、TaGLOSTaCKX。(5)qRT PCR验证结果显示,上调成员中,除TaDREB19外,其余成员以及TaDREB16均表现出持续上升的趋势;下调成员中只有TaDREB25和TaDREB35的表达量呈持续下降的趋势;3个预测靶基因的表达量均持续上升,验证结果与转录组测序结果一致。该研究鉴定出的11个盐胁迫响应TaDREB成员以及预测的3个下游靶基因为小麦耐盐机制解析和分子育种奠定了基础。  相似文献   

8.
【目的】分析沙门氏菌的泛耐药基因组特征。【方法】以EnteroBase数据库中16365株沙门氏菌为对象,利用课题组自主研发的泛耐药基因组分析软件(PRAP),进行泛耐药基因组结构的鉴定,通过曼-惠特尼秩和检验和皮尔逊检验,来分析耐药基因与血清型、序列型(sequence type,ST)及分离株样本来源信息间的相关性。【结果】沙门氏菌共有104种耐药基因,其中核心耐药基因18种,附属耐药基因86种,且沙门氏菌拥有一个开放型的泛耐药基因组;相同的血清型(或ST型)有相似的耐药基因谱,不同血清型(或ST型)间耐药基因的分布差异显著(P0.05),耐药基因与样本来源、分离国家及年份间也存在一定的相关性;在测试的23种获得性耐药基因中,43.48%(10/23)的占比逐年升高,73.91%(17/23)以单一亚型为优势。【结论】利用PRAP软件分析获得的这些结果揭示了近年来沙门氏菌耐药基因的时空分布规律,为沙门氏菌等食源性致病菌耐药性的研究提供了新思路。  相似文献   

9.
Phytophthora infestans (Mont.) de Bary is the most important fungal pathogen of the potato (Solanum tuberosum). The introduction of major genes for resistance from the wild species S. demissum into potato cultivars is the earliest example of breeding for resistance using wild germplasm in this crop. Eleven resistance alleles (R genes) are known, differing in the recognition of corresponding avirulence alleles of the fungus. The number of R loci, their positions on the genetic map and the allelic relationships between different R variants are not known, except that the R1 locus has been mapped to potato chromosome V The objective of this work was the further genetic analysis of different R alleles in potato. Tetraploid potato cultivars carrying R alleles were reduced to the diploid level by inducing haploid parthenogenetic development of 2n female gametes. Of the 157 isolated primary dihaploids, 7 set seeds and carried the resistance alleles R1, R3 and R10 either individually or in combinations. Independent segregation of the dominant R1 and R3 alleles was demonstrated in two F1 populations of crosses among a dihaploid clone carrying R1 plus R3 and susceptible pollinators. Distorted segregation in favour of susceptibility was found for the R3 allele in 15 of 18 F1 populations analysed, whereas the RI allele segregated with a 1:1 ratio as expected in five F1 populations. The mode of inheritance of the R10 allele could not be deduced as only very few F1 hybrids bearing R10 were obtained. Linkage analysis in two F1 populations between R1, R3 and RFLP markers of known position on the potato RFLP maps confirmed the position of the R1 locus on chromosome V and localized the second locus, R3, to a distal position on chromdsome XI.  相似文献   

10.
The genus Lotus comprises a heterogeneous group of annual and perennial species. Lotus japonicus (with MG20 and Gifu ecotypes) has been adopted as one of the model legumes in genetic and genomic studies. Other Lotus species, such us Lotus burttii and Lotus filicaulis, have also been used in genetic and genomic studies because of their capacity to produce fertile progenies in crosses with L. japonicus. In the present work, physiological responses to salt stress in four Lotus genotypes were evaluated on the basis of growth and associated parameters, such as photosynthesis, ions, relative water content, oxidative damage and antioxidant system responses, using two NaCl levels applied by acclimation for up to 28 and 60 d. Growth responses varied with plant developmental stage in the four Lotus genotypes. L. japonicus MG20 was found to be a salt-tolerant genotype, mainly when exposed to salt stress at the young plant stage. The capacity of Lj MG20 to sustain growth under salt stress was correlated with enhancement of Superoxide dismutase and Glutathione reductase activities, as well as with increases in total and reduced glutathione content and lower Na+ accumulation in leaves. These results suggest that enhancement of antioxidant responses in Lj MG20 contributed to improve salt stress tolerance at early stages. On the other hand, after long-term high NaCl stress treatment, L. filicaulis exhibited lower biomass reduction, lower oxidative damage and Na+ accumulation in leaves than the control treatment; hence, this genotype was considered salt-tolerant. These apparently ambiguous results remark that salt tolerance, as a development-related process, was differentially expressed among the Lotus genotypes and depended on stress duration and plant phenological stage.  相似文献   

11.
Conceptual models of drought‐adaptive traits have been used in breeding to accumulate complementary physiological traits (PT) in selected progeny, resulting in distribution of advanced lines to rain‐fed environments worldwide by the International Maize and Wheat Improvement Center (CIMMYT). Key steps in PT breeding at CIMMYT include characterisation of crossing block lines for stress adaptive mechanisms, strategic crossing among parents that encompass as many target traits as possible and early generation selection (EGS) of bulks for canopy temperature (CT). The approach has been successful using both elite × elite crosses as well as three way crosses involving stress adapted landraces. Other EGS techniques that are amenable to high throughput include measurement of spectral reflectance indices and stomatal aperture‐related traits. Their genetic‐ and cost‐effectiveness are supported by realisation of genetic yield gains in response to trait selection, and by economic analysis, respectively. Continual reselection within restricted gene pools is likely to lead to diminishing returns, however, exotic parents can be used to introduce new allelic diversity. Examples include landraces from the primary gene pool, and products of inter‐specific hybridisation with the secondary gene pool consisting of closely related wheat genomes. Both approaches have been successful in introducing stress‐adaptive traits. The main problem with knowing which genetic resource to use in wide‐crossing is the uncertainty with which phenotypic expression can be extrapolated from one genome/genepool to another because of their unimproved or undomesticated genetic backgrounds. Nonetheless, their PT expression can be measured and used as a basis for investing in crossing or wide crossing. Discovering the genetic basis of PT is highly complex because putative QTLs may interact with environment and genetic background, including genes of major effect. Detection of QTLs was improved in mapping populations where flowering time was controlled, while new mapping populations have been designed by screening potential parents that do not contrast in the Rht, Ppd and Vrn alleles. Association genetics mapping is another approach that can be employed for gene discovery using exclusively agronomically improved material, thereby minimising the probability of identifying yield QTLs whose alleles have been already improved by conventional breeding.  相似文献   

12.
The number of dominant Vrn genes in common wheat, Triticum aestivum L., is estimated. Data were obtained supporting Pugsley's and Gotoh's data on the presence of a dominant gene Vrn4 in near-isogenic line 'Triple Dirk F'. The presence of a dominant gene Vrn4 in line 'Gabo-2' of cultivar 'Gabo', which was used by Pugsley as a donor of the gene Vrn4 for the near-isogenic line 'Triple Dirk F', was also confirmed. The Vrn2 and Vrn4 relationship and their chromosomal location are discussed. It was demonstrated that the dominant Vrn8 gene which was introgressed from Triticum sphaerococcum to common wheat by Stelmakh and Avsenin is allelic to Vrn4. While genes Vrn6sc and Vrn7sc which were introgressed from rye, Secale cereale L., by the above-mentioned authors are not allelic to the genes Vrn1, Vrn2, Vrn3 and Vrn4.Communicated by J.W. Snape  相似文献   

13.
The yeastSaccharomyces cerevisiaehas a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently early in life. The increased longevity was due to a reduction in the mortality rate that persisted over many cell divisions (generations) but was not permanent. The genesRAS1andRAS2were necessary to observe this effect of heat stress. TheRAS2gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether.RAS1,on the other hand, appears to have a role in signaling life extension induced by transient, mild heat stress, which is distinct from its life-span-curtailing effect in the absence of stress and its lack of involvement in the response to chronic heat stress. This distinction between theRASgenes may be partially related to their different effects on growth-promoting genes and stress-responsive genes. Theras2mutation clearly hindered resumption of growth and recovery from stress, while theras1mutation did not. TheHSP104gene, which is largely responsible for induced thermotolerance in yeast, was necessary for life extension induced by transient heat stress. An interaction between mitochondrial petite mutations and heat stress was found, suggesting that mitochondria may be necessary for life extension by transient heat stress. The results raise the possibility that theRASgenes and mitochondria may play a role in the epigenetic inheritance of reduced mortality rate afforded by transient, mild heat stress.  相似文献   

14.
Winter wheat requires vernalization, a long exposure to low but non-freezing temperatures, to promote reproductive development. The vernalization requirement in bread wheat (Triticum aestivum L.) is mainly controlled by the Vrn-1 genes that are located on chromosomes 5A, 5B and 5D. Dominant alleles confer spring habit and are epistatic to the recessive winter alleles which means that spring varieties carry at least one dominant allele. To date, two dominant and one recessive Vrn-B1 alleles have been described. Vrn-B1a (formerly designated as Vrn-B1) differs from the winter vrn-B1 allele by a large deletion in intron 1. Vrn-B1b has an additional small deletion and is probably derived from Vrn-B1a. The novel allele described here and designated as Vrn-B1c also has a large deletion within intron 1 but with different breakpoints from Vrn-B1a or b, and sequence duplication, showing that this is an independently derived spring allele. By combining an exon 1 primer with previously published PCR primers it was possible to develop a multiplex PCR that distinguished all four alleles simultaneously. The multiplex PCR was validated by testing 320 winter wheat and 137 spring wheat varieties. This demonstrated that the novel Vrn-B1c allele was present in 25 spring varieties of diverse origin, showing this allele to be widely distributed.  相似文献   

15.
Choline oxidase, isolated from the soil bacterium Arthrobacter globiformis, converts choline to glycinebetaine (N-trimethylglycine) without a requirement for any cofactors. The gene for this enzyme, designated codA, was cloned and introduced into the cyanobacterium Synechococcus sp. PCC 7942. The codA gene was experssed under the control of a strong constitutive promoter, and the transformed cells accumulated glycinebetaine at intracellular levels of 60–80 mM. Consequently the cells acquired tolerance to salt stress, as evaluated in terms of growth, accumulation of chlorophyll and photosynthetic activity.  相似文献   

16.
Improving salt tolerance of economically important plants is imperative to cope with the increasing soil salinity in many parts of the world. Mutation breeding has been widely used to improve plant performance under salinity stress. In this study, we have mutagenized Echinochloa crusgalli L. with sodium azide and three selected mutants (designated fows A) with salt tolerant germination. Their vegetative growth was compared to that of the wild type after short-term and long-term salt stress. The germination of the three fows A mutants in the presence of inhibitory concentrations of NaCl, KCL, and mannitol was better than that of the wild type. Early growth of the mutants in the presence of 200 mM NaCl was also better than that of the wild type perhaps due to improved K+ uptake and enhanced accumulation of sugars particularly sucrose at least in two mutants. But the three mutants and the wild type responded similarly to long-term salt stress. The tolerance mechanisms during short-term and long-term salt stress are discussed.  相似文献   

17.
Summary Zonal pelargoniums exhibit biparental plastid inheritance. After G x W plastid crosses the progeny are a mixture of green, variegated and white embryos corresponding to a maternal, biparental or paternal inheritance of plastids, respectively. There are two patterns of segregation: type-I females have families in which the majority of embryos are green, variegated are of intermediate frequency and white are the least frequent. Type-II females have families in which green and white embryos are present at about the same frequency and variegated are the least common. The results of many selfs and crosses made within and between 8 type-I and 8 type-II plants led us to conclude that the type of female was determined by its genotype with respect to a pair of complementary genes. Plants giving rise to the type-II pattern contained one or two copies of the dominant alleles of both genes, whereas in the absence of either one or both dominant alleles the plants were type I. The genes were called Pr1/pr1 and Pr2/pr2, an adaptation of symbolism used previously. All 8 type IIs were double heterozygotes Pr1pr1, Pr2pr2, whereas we found 3 genotypes among the type Is, Pr1Pr1, pr2pr2; pr1pr1, Pr2Pr2 and pr1pr1, Pr2pr2. In unrelated experiments we found type IIs of which some were again double heterozygotes and others single heterozygotes Pr1pr1, Pr2Pr2 or Pr1Pr1, Pr2pr2. The model displaces an earlier model based on the proposed operation of a gametophytic lethal or incompatibility system.  相似文献   

18.
The characteristic curd of cauliflower (Brassica oleracea var. botrytis L.) consists of proliferating, arrested inflorescence and floral meristems. However, the origins and events leading to the domestication of this important crop trait remain unclear. A similar phenotype observed in the ap1-1/cal-1 mutant of Arabidopsis thaliana led to speculation that the orthologous genes from B. oleracea may be responsible for this characteristic trait. We have carried out a detailed molecular and genetic study, which allows us to present a genetic model based on segregation of recessive alleles at specific, mapped loci of the candidate genes BoCAL and BoAP1. This accounts for differences in stage of arrest between cauliflower and Calabrese broccoli (B. oleracea var. italica Plenck), and predicts the intermediate stages of arrest similar to those observed in Sicilian Purple types. Association of alleles of BoCAL-a with curding phenotypes of B. oleracea is also demonstrated through a survey of crop accessions. Strong correlations exist between specific alleles of BoCAL-a and discrete inflorescence morphologies. These complementary lines of evidence suggest that the cauliflower curd arose in southern Italy from a heading Calabrese broccoli via an intermediate Sicilian crop type. PCR-based assays for the two key loci contributing to curd development are suitable for adoption in marker-assisted selection.  相似文献   

19.
The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, very little is known about the defense mechanisms activated in this moss after pathogen assault. In this study, we show that P. patens activated multiple and similar responses against Pythium irregulare and Pythium debaryanum, including the reinforcement of the cell wall, induction of the defense genes CHS, LOX and PAL, and accumulation of the signaling molecules jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (OPDA). However, theses responses were not sufficient and infection could not be prevented leading to hyphae colonization of moss tissues and plant decay. Pythium infection induced reactive oxygen species production and caused cell death of moss tissues. Taken together, these data indicate that Pythium infection activates in P. patens common responses to those previously characterized in flowering plants. Microscopic analysis also revealed intracellular relocation of chloroplasts in Pythium-infected tissues toward the infection site. In addition, OPDA, JA and its methyl ester methyl jasmonate induced the expression of PAL. Our results show for the first time JA and OPDA accumulation in a moss and suggest that this defense pathway is functional and has been maintained during the evolution of plants. Authors Juan Pablo Oliver and Alexandra Castro contributed equally to this work.  相似文献   

20.
 Heading-date in cereals is the final result of a number of interacting characters that include vernalization requirement, photoperiod sensitivity, and earliness per se. Progress in developing adapted varieties may be achieved by determining the chromosomal locations of genes controlling these characters. Nineteen doubled-haploid (DH) lines from the Dicktoo×Morex mapping population were phenotyped in controlled- environment photoperiod experiments to determine the role of two previously detected QTLs on the developmental patterns of barley. The QTLs are hypothesised to represent the effects of the Ppd and Sh2 loci on chromosomes 2 (2H) and 7 (5H), respectively. Alleles at the Ppd locus were found to be vary in response to photoperiod duration. Vernalization had some effect on alleles at both loci. The presence of early and late- flowering transgressive segregants in this mapping population can be explained by interactions between the Ppd and Sh2 loci. The Ppd and Sh2 loci are hypothesised to be homoeologous with the Ppd and Vrn1 loci of wheat. Received: 1 August 1996 / Accepted: 15 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号