首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two populations of apolipoprotein (apo) A-I-containing lipoprotein particles are found in high density lipoproteins (HDL): those that also contain apo A-II[Lp(A-I w A-II)] and those that do not [Lp(A-I w/o A-II)]. Lp(A-I w/o A-II) comprised two distinct particle sizes with mean hydrates Stokes diameter of 10.5 nm for Lp(A-I w/o A-II)1 and 8.5 nm for Lp(A-I w/o A-II)2. To study the effect of ultracentrifugation on these particles, Lp(A-I w/o A-II) and Lp(A-I w A-II) were isolated from the plasma and the ultracentrifugal HDL (d 1.063-1.21 g/ml fractions) of five normolipidemic and three hyperlipidemic subjects. The size subpopulations of these particles were studied by gradient polyacrylamide gel electrophoresis. Several consistent differences were detected between plasma Lp(A-I w/o A-II) and HDL Lp(A-I w/o A-II). First, in all subjects, the relative proportion of Lp(A-I w/o A-II)1 to Lp(A-I w/o A-II)2 isolated from HDL was reduced. Second, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 were considerably reduced in HDL. Third, a distinct population of particles with approximate Stokes diameter of 7.1 nm usually absent in plasma was detected in HDL Lp(A-I w/o A-II). Little difference in subpopulation distribution was detected between Lp(A-I w A-II) isolated from the plasma and HDL of the same subject. When plasma Lp(A-I w/o A-II) and Lp(A-I w A-II) were centrifuged, 14% and 4% of A-I were, respectively, recovered in the D greater than 1.21 g/ml fraction. Only 2% A-II was found in this density fraction. These studies show that the Lp(A-I w/o A-II) particles are less stable than Lp(A-I w A-II) particles upon ultracentrifugation. Among the various Lp(A-I w/o A-II) subpopulations, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 are most labile.  相似文献   

2.
Transfer of apolipoproteins (apo) between the two subpopulations of apo A-I-containing lipoproteins in human plasma: those with A-II [Lp(AI w AII)] and those without [Lp(AI w/o AII)], were studied by observing the transfer of 125I-apo from a radiolabeled subpopulation to an unlabeled subpopulation in vitro. When Lp(AI w AII) was directly radioiodinated, 50.3 +/- 7.4 and 19.5 +/- 7.7% (n = 6) of the total radioactivity was associated with A-I and A-II, respectively. In radioiodinated Lp(AI w/o AII), 71.5 +/- 6.8% (n = 6) of the total radioactivity was A-I-associated. Time-course studies showed that, while some radiolabeled proteins transferred from one population of HDL particles to another within minutes, at least several hours were necessary for transfer to approach equilibrium. Incubation of the subpopulations at equal A-I mass resulted in the transfer of 51.8 +/- 5.0% (n = 4) of total radioactivity from [125I]Lp(AI w/o AII) to Lp(AI w AII) at 37 degrees C in 24 h. The specific activity (S.A.) of A-I in the two subpopulations after incubation was nearly identical. Under similar incubation conditions, only 13.4 +/- 4.6% (n = 4) of total radioactivity was transferred from [125I]Lp(AI w AII) to Lp(AI w/o AII). The S.A. of A-I after incubation was 2-fold higher in particles with A-II than in particles without A-II. These phenomena were also observed with iodinated high-density lipoproteins (HDL) isolated by ultracentrifugation and subsequently subfractionated by immunoaffinity chromatography. However, when Lp(AI w AII) radiolabeled by in vitro exchange with free [125I]A-I was incubated with unlabeled Lp(AI w/o AII), the S.A. of A-I in particles with and without A-II differed by only 18% after incubation. These data are consistent with the following: (1) in both populations of HDL particles, some radiolabeled proteins transferred rapidly (minutes or less), while others transferred slowly (hours); (2) when Lp(AI w AII) and Lp(AI w/o AII) were directly iodinated, all labeled A-I in particles without A-II were transferable, but some labeled AI in particles with A-II were not; (3) when Lp(AI w AII) were labeled by in vitro exchange with [125I]A-I, considerably more labeled A-I were transferable. These observations suggest the presence of non-transferable A-I in Lp(AI w AII).  相似文献   

3.
Epidemiologic and genetic data suggest an inverse relationship between plasma high density lipoprotein (HDL) cholesterol and the incidence of premature coronary artery disease. Some of the defects leading to low levels of HDL may be a consequence of mutations in the genes coding for HDL apolipoproteins A-I and A-II or for enzymes that modify these particles. A proband with plasma apoA-I and HDL cholesterol that are below 15% of normal levels and with marked bilateral arcus senilis was shown to be heterozygous for a 45-base pair deletion in exon four of the apoA-I gene. This most likely represents a de novo mutation since neither parent carries the mutant allele. The protein product of this allele is predicted to be missing 15 (Glu146-Arg160) of the 22 amino acids comprising the third amphipathic helical domain. The HDL of the proband and his family were studied. Using anti-A-I and anti-A-II immunosorbents we found three populations of HDL particles in the proband. One contained both apoA-I and A-II, Lp(A-I w A-II); one contained apoA-I but no A-II, Lp(A-I w/o A-II); and the third (an unusual one) contained apoA-II but no A-I. Only Lp(A-I w A-II) and (A-I w/o A-II) were present in the plasma of the proband's parents and brother. Analysis of the HDL particles of the proband by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two protein bands with a molecular mass differing by 6% in the vicinity of 28 kDa whereas the HDL particles of the family members exhibited only a single apoA-I band. The largely dominant effect of this mutant allele (designated apoA-ISeattle) on HDL levels suggests that HDL particles containing any number of mutant apoA-I polypeptides are catabolized rapidly.  相似文献   

4.
HDL subspecies Lp(A-I) and Lp(A-I,A-II) have different anti-atherogenic potentials. To determine the role of lipoprotein lipase (LPL) and hepatic lipase (HL) in regulating these particles, we measured these enzyme activities in 28 healthy subjects with well-controlled Type 1 diabetes, and studied their relationship with Lp(A-I) and Lp(A-I,A-II). LPL was positively correlated with the apolipoprotein A-I (apoA-I), cholesterol, and phospholipid mass in total Lp(A-I), and with the apoA-I in large Lp(A-I) (r >or= 0.58, P >or= 0.001). HL was negatively correlated with all the above Lp(A-I) parameters plus Lp(A-I) triglyceride (r >or= -0.53, P or= 0.50, P 相似文献   

5.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and associates with high density lipoproteins (HDL). We have characterized the distribution of GPI-PLD among lipoproteins in human plasma. Apolipoprotein (apo)-specific lipoproteins containing apoB (Lp[B]), apoA-I and A-II (Lp[A-I, A-II]), or apoA-I only (Lp[A-I]) were isolated using dextran sulfate and immunoaffinity chromatography. In six human plasma samples with HDL cholesterol ranging from 39 to 129 mg/dl, 79 +/- 14% (mean +/- SD) of the total plasma GPI-PLD activity was associated with Lp[A-I], 9 +/- 12% with Lp[A-I, A-II], and 1 +/- 1% with Lp[B]; and 11 +/- 10% was present in plasma devoid of these lipoproteins. Further characterization of the GPI-PLD-containing lipoproteins by gel-filtration chromatography and nondenaturing polyacrylamide and agarose gel electrophoresis revealed that these apoA-I-containing particles/complexes were small (8 nm) and migrated with pre-beta particles on agarose electrophoresis. Immunoprecipitation of GPI-PLD with a monoclonal antibody to GPI-PLD co-precipitated apoA-I and apoA-IV but little or no apoA-II, apoC-II, apoC-III, apoD, or apoE. In vitro, apoA-I but not apoA-IV or bovine serum albumin interacted directly with GPI-PLD, but did not stimulate GPI-PLD-mediated cleavage of a cell surface GPI-anchored protein. Thus, the majority of plasma GPI-PLD appears to be specifically associated with a small, discrete, and minor fraction of lipoproteins containing apoA-I and apoA-IV. -- Deeg, M. A., E. L. Bierman, and M. C. Cheung. GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J. Lipid Res. 2001. 42: 442--451.  相似文献   

6.
Recent immunoaffinity studies demonstrate two populations of high density lipoprotein (HDL) particles: one contains both apolipoprotein (apo) A-I and A-II [Lp(A-I w A-II)], and the other contains apoA-I but no A-II [Lp(A-I w/o A-II)]. To investigate whether these two populations are derived from different precursors, we applied sequential immunoaffinity chromatography to study the lipoprotein complexes in HepG2 conditioned serum-free medium. The apparent secretion rates of apoA-I, A-II, E, D, A-IV, and lecithin:cholesterol acyltransferase (LCAT) were 4013 +/- 1368, 851 +/- 217, 414 +/- 64, 171 +/- 51, 32 +/- 14, and 2.9 +/- 0.7 ng/mg cell protein per 24 h, respectively (n = 3-5). Anti-A-II removed all apoA-II but only 39 +/- 5% (n = 5) apoA-I from the medium. These HepG2 Lp(A-I w A-II) also contained 31 +/- 1% (n = 5) of the apoD and 82 +/- 2% (n = 3) of the apoE in the medium. The apoE existed both as E and E-A-II complex. Lipoproteins isolated from the apoA-II-free medium by anti-A-I contained, besides apoA-I, 60 +/- 3% of the medium apoD and trace quantities of apoE. The majority of HepG2 apoA-IV (78 +/- 4%) (n = 3) and LCAT (85 +/- 6%) (n = 3) was not associated with either apoA-I or A-II. HepG2 Lp(A-I w A-II) contained relatively more lipids than Lp(A-I w/o A-II) (45 vs. 37%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The A-I Milano variant of apolipoprotein A-I (A-IM), by virtue of its Arg-173----Cys substitution, is capable of forming a disulfide bond with the 77-amino-acid apolipoprotein A-II polypeptide (A-IIS) as well as with itself to produce dimers, A-IM/A-IIS and A-IM/A-IM, respectively. A-I-containing lipoproteins (Lp): particles with A-II (Lp(A-I with A-11)) and particles without A-II (Lp(A-I without A-II)) in the plasma of two nonhyperlipidemic A-IM carriers were investigated to determine the effect of A-IM on these lipoproteins. Despite the existence of abnormal apolipoprotein dimers and the unusually low HDL cholesterol (17 and 14 mg/dl), A-I (67 and 75 mg/dl), and A-II (18 and 18 mg/dl) levels in the two carriers, the plasma A-I of the carriers was distributed between Lp(A-I with A-II) and Lp(A-I without A-II) in a proportion comparable to that observed in normals. As expected, A-IM/A-IIS mixed dimer was found in carrier Lp(A-I with A-II). However, A-IM/A-IM dimer was located almost exclusively in carrier Lp(A-I without A-II). Chemical (dimethylsuberimidate) crosslinking of the protein moieties of the major subpopulations of Lp(A-I with A-II) and Lp(A-I without A-II) of normal and A-IM carriers showed that Lp(A-I with A-II), which is located predominantly in the 7.8-9.7 nm interval ((HDL2a + 3a + 3b)gge), had an apparent protein molecular weight equivalent to two molecules of A-I and one to two molecules of A-II per particle. Most of the Lp(A-I without A-II) particles, located predominantly in the size intervals of 9.7-12.9 nm (designated (HDL2b)gge) and 8.2-8.8 nm (HDL3a)gge) had protein moieties exhibiting a molecular weight equivalence predominantly of four and three molecules of A-I, respectively. A small quantity of particles with apparent protein content of two molecules of A-I in the 7.2-8.2 nm interval ((HDL3b + 3c)gge) was also detected. These studies showed that in nonhyperlipidemic A-IM carriers, the occurrence of apolipoprotein dimers had not markedly affected the protein stoichiometry of Lp(A-I with A-II) and Lp(A-I without A-II).  相似文献   

8.
Two populations of A-I-containing lipoprotein particles: A-I-containing lipoprotein with A-II (Lp (A-I with A-II], and A-I-containing lipoprotein without A-II (Lp (A-I without A-II] have been isolated from plasma of 10 normolipidemic subjects by immunoaffinity chromatography and characterized. Both types of particles possess alpha-electrophoretic mobility and hydrated density in the range of plasma high-density lipoproteins (HDL). Lp (A-I without A-II) and Lp (A-I with A-II) are heterogeneous in size. Lp (A-I without A-II) comprised two distinct particle sizes with mean apparent molecular weight and Stokes diameter of 3.01 X 10(5), and 10.8 nm for Lp (A-I without A-II)1, and 1.64 X 10(5), and 8.5 nm for Lp (A-I without A-II)2. Lp (A-I with A-II) usually contained particles of at least three distinct molecular sizes with mean apparent molecular weight and Stokes diameter of 2.28 X 10(5) and 9.6 nm for Lp (A-I with A-II)1, 1.80 X 10(5) and 8.9 nm for Lp (A-I with A-II)2, and 1.25 X 10(5) and 8.0 nm for Lp (A-I with A-II)3. Apoproteins C, D, and E, and lecithin:cholesterol acyltransferase (LCAT) were detected in both Lp (A-I without A-II) and Lp (A-I with A-II) with most of the apoprotein D, and E, and LCAT (EC 2.3.1.43) in Lp (A-I with A-II) particles. Lp (A-I without A-II) had a slightly higher lipid/protein ratio than Lp (A-I with A-II). Lp (A-I with A-II) had an A-I/A-II molar ratio of approximately 2:1. The percentage of plasma A-I associated with Lp (A-I without A-II) was highly correlated with the A-I/A-II ratio of plasma (r = 0.96, n = 10). The variation in A-I/A-II ratio of HDL density subfractions therefore reflects different proportions of two discrete types of particles: particles containing A-I and A-II in a nearly constant ratio and particles containing A-II but no A-II. Each type of particle is heterogeneous in size and in apoprotein composition.  相似文献   

9.
Two types of A-I-containing lipoproteins are found in human high density lipoproteins (HDL): particles with A-II (Lp(A-I with A-II] and particles without A-II (Lp(A-I without A-II]. We have studied the distribution of lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer (CET) activities in these particles. Lp(A-I with A-II) and Lp(A-I without A-II) particles were isolated from ten normolipidemic subjects by anti-A-I and anti-A-II immunosorbents. Most plasma LCAT mass (70 +/- 15%), LCAT (69 +/- 16%), and CET (81 +/- 15%) activities were detected in Lp(A-I without A-II). Some LCAT (mass: 16 +/- 7%, activity: 17 +/- 8%) and CET activities (7 +/- 8%) were detected in Lp(A-I with A-II). To determine the size subspecies that contain LCAT and CET activities, isolated Lp(A-I with A-II) and Lp(A-I without A-II) particles of six subjects were further fractionated by gel filtration column chromatography. In Lp(A-I without A-II), most LCAT and CET activities were associated with different size particles, with the majority of the LCAT and CET activities located in particles with hydrated Stokes diameters of 11.6 +/- 0.4 nm and 10.0 +/- 0.6 nm, respectively. In Lp(A-I with A-II), most of the LCAT and CET activities were located in particles similar in size: 11.1 +/- 0.4 nm and 10.6 +/- 0.3 nm, respectively. Ultracentrifugation of A-I-containing lipoproteins resulted in dissociation of both LCAT and CET activities from the particles. Furthermore, essentially all CET and LCAT activities were recovered in the non-B-containing plasma obtained by anti-LDL immunoaffinity chromatography. This report, therefore, provides direct evidence for the association of LCAT and CET protein with A-I-containing lipoproteins. Our conclusions pertain to fasting normolipidemic subjects and may not be applicable to hyperlipidemic or nonfasting subjects.  相似文献   

10.
Small particles of high density lipoproteins (HDL) were isolated from fresh, fasting human plasma and from the ultracentrifugally isolated high density lipoprotein fraction by means of ultrafiltration through membranes of molecular weight cutoff of 70,000. These particles were found to contain cholesterol, phospholipids, and apolipoproteins A-I and A-II; moreover, they floated at a density of 1.21 kg/l. They contained 67.5% of their mass as protein and the rest as lipid. Two populations of small HDL particles were identified: one containing apolipoprotein A-I alone [(A-I)HDL] and the other containing both apolipoproteins A-I and A-II [A-I + A-II)HDL]. The molar ratio of apoA-I to apoA-II in the latter subclass isolated from plasma or HDL was 1:1. The molecular weights of these subpopulations were determined by nondenaturing gradient polyacrylamide gel electrophoresis and found to be 70,000; 1.5% of the plasma apoA-I was recovered in the plasma ultrafiltrate.  相似文献   

11.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

12.
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.  相似文献   

13.
Endothelial lipase (EL) is a triglyceride lipase gene family member that has high phospholipase and low triglyceride lipase activity. The aim of this study was to determine whether the phospholipase activity of EL is sufficient to remodel HDLs into small particles and mediate the dissociation of apolipoprotein A-I (apoA-I). Spherical, reconstituted HDLs (rHDLs) containing apoA-I only [(A-I)rHDLs], apoA-II only [(A-II)rHDLs], or both apoA-I and apoA-II [(A-I/A-II) rHDLs] were prepared. The rHDLs, which contained only cholesteryl esters in their core and POPC on the surface, were incubated with EL. As the rHDLs did not contain triacylglycerol, only the POPC was hydrolyzed. Hydrolysis was greater in the (A-I/A-II)rHDLs than in the (A-I)rHDLs. The (A-II)rHDL phospholipids were not hydrolyzed by EL. EL remodeled the (A-I)rHDLs and (A-I/A-II)rHDLs, but not the (A-II)rHDLs, into smaller particles. The reduction in particle size was related to the amount of phospholipid hydrolysis, with the diameter of the (A-I/A-II)rHDLs decreasing more than that of the (A-I)rHDLs. These changes did not affect the conformation of apoA-I, and neither apoA-I nor apoA-II dissociated from the rHDLs. Comparable results were obtained when human plasma HDLs were incubated with EL. These results establish that the phospholipase activity of EL remodels plasma HDLs and rHDLs into smaller particles without mediating the dissociation of apolipoproteins.  相似文献   

14.
Although HDL is inversely correlated with coronary heart disease, elevated HDL-cholesterol is not always protective. Additionally, HDL has biological functions that transcend any antiatherogenic role: shotgun proteomics show that HDL particles contain 84 proteins (latest count), many correlating with antioxidant and anti-inflammatory properties of HDL. ApoA-I has been suggested to serve as a platform for the assembly of these protein components on HDL with specific functions - the HDL proteome. However, the stoichiometry of apoA-I in HDL subspecies is poorly understood. Here we use a combination of immunoaffinity chromatography data and volumetric analysis to evaluate the size and stoichiometry of LpA-I and LpA-I,A-II particles. We conclude that there are three major LpA-I subspecies: two major particles, HDL[4] in the HDL3 size range (d = 85.0 ± 1.2 Å) and HDL[7] in the HDL2 size range (d = 108.5 ± 3.8 Å) with apoA-I stoichiometries of 3 and 4, respectively, and a small minor particle, HDL[1] (d = 73.8 ± 2.1Å) with an apoA-I stoichiometry of 2. Additionally, we conclude that the molar ratio of apolipoprotein to surface lipid is significantly higher in circulating HDL subspecies than in reconstituted spherical HDL particles, presumably reflecting a lack of phospholipid transfer protein in reconstitution protocols.  相似文献   

15.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma.  相似文献   

16.
High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL2 (large) and HDL3 (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL2. Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.  相似文献   

17.
It is important to understand HDL heterogeneity because various subspecies possess different functionalities. To understand the origins of HDL heterogeneity arising from the existence of particles containing only apoA-I (LpA-I) and particles containing both apoA-I and apoA-II (LpA-I+A-II), we compared the abilities of both proteins to promote ABCA1-mediated efflux of cholesterol from HepG2 cells and form nascent HDL particles. When added separately, exogenous apoA-I and apoA-II were equally effective in promoting cholesterol efflux, although the resultant LpA-I and LpA-II particles had different sizes. When apoA-I and apoA-II were mixed together at initial molar ratios ranging from 1:1 to 16:1 to generate nascent LpA-I+A-II HDL particles, the particle size distribution altered, and the two proteins were incorporated into the nascent HDL in proportion to their initial ratio. Both proteins formed nascent HDL particles with equal efficiency, and the relative amounts of apoA-I and apoA-II incorporation were driven by mass action. The ratio of lipid-free apoA-I and apoA-II available at the surface of ABCA1-expressing cells is a major factor in determining the contents of these proteins in nascent HDL. Manipulation of this ratio provides a means of altering the relative distribution of LpA-I and LpA-I+A-II HDL particles.  相似文献   

18.
A unique class of lipid-poor high-density lipoprotein, pre-beta1 HDL, has been identified and shown to have distinct functional characteristics associated with intravascular cholesterol transport. In this study we have characterized the structure/function properties of poorly lipidated HDL particles and the factors that mediate their conversion into multimolecular lipoprotein particles. Studies were undertaken with homogeneous recombinant HDL particles (LpA-I) containing apolipoprotein (apo) A-I and various amounts of palmitoyloleoylphosphatidylcholine (PC) and cholesterol. Complexation of apoA-I with small amounts of PC and cholesterol results in the formation of discrete lipoprotein structures that have a hydrated diameter of about 6 nm but contain only one molecule of apoA-I (Lp1A-I). While the molecular charge and alpha-helix content of apoA-I are unaffected by lipidation, the thermodynamic stability of the protein is reduced significantly (from 2.4 to 0.9 kcal/mol of apoA-I). Evaluation of apoA-I conformation by competitive radioimmunoassay with monoclonal antibodies shows that addition of small amounts of PC and cholesterol to apoA-I significantly increases the immunoreactivity of a number of domains over the entire molecule. Increasing the ratio of PC:apoA-I to 10:1 in the Lp1A-I complex is associated with increases in the alpha-helix content and stability of apoA-I. However, incorporation of 10-15 mol of PC destabilizes the Lp1A-I complex and promotes the formation of more thermodynamically stable (1.8 kcal/mol of apoA-I) bimolecular structures (Lp2A-I) that are approximately 8 nm in diameter. The formation of an Lp2A-I particle is associated with an increased immunoreactivity of most of the epitopes studied, with the exception of one central domain (residues 98-121), which becomes significantly less exposed. This structural change parallels a significant increase in the net negative charge on the complex. Characterization of the ability of these lipoproteins to act as substrates for lecithin:cholesterol acyltransferase (LCAT) shows that unstable Lp1A-I complexes stimulate a higher rate of cholesterol esterification by LCAT than the small but more stable Lp2A-I particles (Vmax values are 5.8 and 0.3 nmol of free cholesterol esterified/h, respectively). The ability of LCAT to interact with lipid-poor apoA-I suggests that LCAT does not need to bind to the lipid interface on an HDL particle but that LCAT may directly interact with apoA-I. The data suggests that lipid-poor HDL particles may be metabolically reactive particles because they are thermodynamically unstable.  相似文献   

19.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

20.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号